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Abstract
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the convection terms in the momentum and level set equations; (3) a simple first-order upwind
algorithm for the convection term in the viscoelastic stress equations; (4) central difference
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equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.
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1 Introduction

The goal of this work is to develop computational techniques which can be applied to two-phase

viscoelastic flows in complex geometries. The fluid model considered in this work is the Oldroyd-B

viscoelastic fluid model, in which both the dynamic viscosity and relaxation time are constant. Our

purpose is to simulate two-phase immiscible incompressible flows in the presence of surface tension

and density jump across the interface separating a viscoelastic fluid and from air, incorporated

with a macroscopic slipping contact line model which describes the air-fluid-wall dynamics. The

fluid interface between the air and the fluid is treated as an infinitely thin immiscible boundary,

separating regions of different but constant densities and viscosities. The flow is axisymmetric, and

for boundary conditions on solid walls we assume that both the normal and tangential component

of the fluid velocity vanish; this is amended by the contact model at places where the interface

meets walls. Here, we wish to be able to simulate air/wall/fluid interactions and such effects as

interactions between geometry and viscoelastic forces. The computational model and algorithm

are general enough to handle problems in which either of the two fluids is either viscoelastic or

Newtonian.

Applications involving viscoelastic fluid jets are quite broad, and include such areas as microdis-

pensing of bioactive fluids through high throughput injection devices, creation of cell attachment

sites, scaffolds for tissue engineering, coatings and drug delivery systems for controlled drug release,

and viscoelastic blood flow flow past valves.

We test and apply these algorithms in the context of ink jet plotters. Regular dye-based inks

used in desktop printers are Newtonian, which means the relation between the stress tensor and

the rate of deformation tensor at an instant is linear and not related to any other instant. The use

of pigment-based inks at the end of the 1990’s improved the color durability of a ink jet printout.

Pigment-based inks and inks used in industrial printing applications are usually viscoelastic, i.e.

the relation between the stress tensor and the rate of deformation tensor at an instant depends on

the deformation history.

The typical structure of an ink jet nozzle is shown in Figure 1. The actual geometry is axisym-

metric and is not drawn to scale. Ink is stored in a cartridge, and driven through the nozzle in

response to a dynamic pressure at the lower boundary (nozzle inflow). The dynamics of incompress-

ible viscoelastic fluid flow through the nozzle, coupled to surface tension effects along the ink-air

interface and boundary conditions along the wall, act to determine the shape of the interface as

it moves. A negative pressure at the nozzle inflow induces a backflow, which together with the

capillary instability causes the bubble to pinch off. The bubble moves through the domain and

usually separates into a major droplet and at least one small droplet (satellite).
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1.1 Background

Several different numerical simulations of the Newtonian ink jet process have been performed

in recent years, see, for example, Aleinov et al.[1], Sou et al.[22], and Yu et al.[28, 29]. Our

methods make use of level set methods for tracking the fluid interface boundaries, coupled to

projection methods to solving the associated fluid flows. A large number of background references

for projection methods and level set methods are given in [28]; here we briefly mention the original

paper on projection methods for incompressible flow by Chorin[8], second-order Godunov-type

improvements by Bell, Colella, and Glaz[4], the finite-element approximate projection by Almgren

et al.[2], and the extension of these techniques to quadrilateral grids (see, for example, Bell et

al.[6]) and to moving quadrilateral grids (see Trebotich and Colella[26]). On the interface tracking

side, level set methods, introduced in Osher and Sethian[15], rely in part on the theory of curve

and surface evolution given in Sethian[18, 19] and on the link between front propagation and

hyperbolic conservation laws discussed in Sethian[20]; these techniques recast interface motion as

a time-dependent Eulerian initial value partial differential equation. For a general introduction

and overview, see Sethian[21]. For details about projection methods and their coupling to level

set methods, see Almgren et al.[2, 3], Bell et al.[4], Bell and Marcus[5], Chang et al.[7], Chorin[8],

Puckett et al.[16], Sussman and Smereka[24], Sussman et al.[23, 25], and Zhu and Sethian[30]. On

the viscoelastic side, in recent years there has been considerable interest in projection-type schemes

for viscoelastic flow, see, for example, Trebotich et. al.[26]. A good overview of issues involved in

simulating viscoelastic flows may be found in [11].

One of the most perplexing problems in viscoelastic flow is the limitations imposed on the Weis-

senberg number. Algorithms typically go unstable for a moderate range of Weissenberg numbers,

and this has been the subject of considerable research: large stress levels, coupled to regimes of

rapid changes are computationally difficult and cause many schemes, both finite difference and

finite element, to go unstable. The problem is summarized in [14]: see [10] for a good review, as

well as [26] and [13] for some recent work. An excellent introductory review of the mathematical

and numerical issues may be found in [11].

1.2 Current Work

In previous work [28, 29], we have built numerical simulations of the ink jet process for Newtonian

fluids using coupled level set and projection methods in both rectangular and arbitrary quadrilateral

geometries. In this work, we extend these results to the viscoelastic regime. The coupled algorithm

seamlessly incorporates several things: (1) a projection method to enforce the fluid incompressibil-

ity; (2) the level set methods to implicitly capture the moving interface; (3) a higher-order Godunov

type algorithm for the convection terms in the momentum and level set equations; (4) a simple
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first-order upwind algorithm for the convection term in the viscoelastic stress equations; (5) the

central difference for viscosity, surface tension, and other upper-convected derivative terms; and (6)

an equivalent circuit to calculate the inflow pressure (or flow rate) with given dynamic voltage.

We apply these techniques to perform a parameter study of the jetting ejection process under a

range of viscoelastic relaxation parameters. Our results show the effect of viscoelastic parameters

on the jetting process. In particular, they demonstrate that the ink elasticity has a dramatic

effect on droplet ejection and formation. For Newtonian fluids under reasonable configurations and

parameters, pressure bursts in the ink chamber expel ink through the nozzle which then pinches

off and breaks into droplets. As the ink characteristics become more viscoelastic, droplets become

longer in shape, smaller in volume, and pinch off later. In the case of larger viscoelastic relaxation

times, droplets are pulled back by the combination of elastic effects and surface tension and cannot

be ejected.

In addition, we analyze the effectiveness of our approach under increasing Weissenberg number,

and try to lay out the regimes in which it is effective.

2 Level Set Formulation

2.1 Equations of Motion

Fluid #1 (ink) is a viscoelastic fluid. We use the Oldroyd-B viscoelastic fluid model to present our

algorithm. Hence fluid #1 is governed by

ρ1

Du1

Dt
= −∇p1 +∇ · (2µ1D1) +∇ · τ 1 , ∇ · u1 = 0 ,

Dτ 1

Dt
= τ 1 · (∇u1) + (∇u1)

T · τ 1 −
1

λ1

(τ 1 − 2µp1D1) .
(1)

Fluid #2 (air) is governed by the incompressible Navier-Stokes equations, i.e.

ρ2

Du2

Dt
= −∇p2 +∇ · (2µ2D2) , ∇ · u2 = 0 . (2)

In the above equations,

Di =
1

2

[
∇ui + (∇ui)

T
]
, i = 1, 2 ,

ui = uier + viez , i = 1, 2
(3)

are the rate of deformation tensor and the fluid velocity, respectively, Dui

Dt = [ ∂
∂t + (ui · ∇)]ui is

the Lagrangian time derivative, pi the pressure, τ 1 the viscoelastic stress tensor of fluid #1, ρi the

density, µi the dynamic viscosity, λ1 the viscoelastic relaxation time of fluid #1, µp1 the solute

dynamic viscosity of fluid #1. The subscript i = 1, 2 is used to denote the variable or constant in

fluid #1 (ink) or fluid #2 (air).
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We would like to make several comments here. First, since the second fluid is assumed to be

the air, which is Newtonian, the viscoelastic stress tensor τ 2 vanishes in fluid #2. The dynamic

viscosity µ1 is actually the dynamic viscosity of the ink solvent, which is usually water. Second,

the first three terms together in (1) Dτ 1

Dt −τ 1 · (∇u1)− (∇u1)
T · τ 1 constitute the upper-convected

time derivative of the viscoelastic stress tensor. It is used in the Oldroyd-B model to guarantee

the material frame indifference. It can be also deemed as the Lagrangian time derivative of the

Kirchoff-Piola stress tensor of the second kind. Third, because the size of typical ink jet print heads

is small, the gravity term is not important and is omitted. The inclusion of a gravity term does not

change any part of the numerical schemes described in the next sections. Finally, the numerical

schemes work equally well for cases in which both fluids are viscoelastic.

The boundary conditions at the interface of the two phases are the continuity of the velocity

and the jump condition

(2µ1D − 2µ2D) · n = (p1 − p2 + σκ)n , (4)

where n is the unit normal to the interface drawn from fluid #2 to fluid #1 and κ is the curvature

of the interface.

We use the level set method to trace the interface (see Osher and Sethian[15]). The interface

is the zero level of the level set function φ, chosen so that φ(x, y) is less than (greater than) 0 if

(x, y) is in fluid 2 (fluid 1), vanishes on the interface, and is initialized as the signed distance to the

interface. The unit normal on the interface can be expressed in terms of φ by n =
∇φ

|∇φ|

∣∣∣∣
φ=0

and

κ = ∇ ·

(
∇φ

|∇φ|

)∣∣∣∣
φ=0

. Finally, let u = u1, τ = τ 1, p = p1, and D = D1 for φ > 0, and u = u2,

τ = τ 2, p = p2, and D = D2 for φ < 0. The governing equations for the two-phase flow and the

boundary condition at the interface can then be re-written as

∇ · u = 0 , (5)

ρ(φ)
Du

Dt
= −∇p+∇ · (2µ(φ)D) +∇ · τ − σκ(φ)δ(φ)∇φ , (6)

Dτ

Dt
= τ · (∇u) + (∇u)T · τ −

1

λ(φ)
(τ − 2µp(φ)D) (7)

where δ is the Dirac delta function and ρ, µ, λ, and µp are taken as ρ1(ρ2), µ1(µ2), λ1(0), and µp1(0)

for φ ≥ 0(φ < 0). The fact that the surface tension can be written as a body force concentrated at

the interface greatly reduces the difficulty involved in solving two-phase fluid flows.

To make the governing equations dimensionless, we choose the following definitions

x = Lx′, y = Ly′, t =
L

U
t′,

p = ρ1U
2p′, u = Uu

′, τ = ρ1U
2
τ
′ ,

ρ = ρ1ρ
′, µ = µ1µ

′, λ =
L

U
λ′, µp = µ1µ

′
p ,

(8)
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where the primed quantities are dimensionless and L, U, ρ1, µ1 are respectively the characteristic

length, characteristic velocity, density of fluid #1, and solvent dynamic viscosity of fluid #1.

Substituting the above into equations (5) and (6), and dropping the primes, we have

∇ · u = 0 , (9)

Du

Dt
= −

1

ρ(φ)
∇p+

1

ρ(φ)Re
∇ · (2µ(φ)D)−

1

ρ(φ)We
κ(φ)δ(φ)∇φ+∇ · τ , (10)

Dτ

Dt
= τ · (∇u) + (∇u)T · τ −

1

λ(φ)

(
τ − 2

µp(φ)

Rep
D

)
(11)

where the density ratio, viscosity ratio, normalized relaxation time, Reynolds number of the solvent,

Weber number, and Reynolds number of the solute are defined by

ρ(φ) =



 1 if φ ≥ 0

ρ2/ρ1 if φ < 0



 µ(φ) =



 1 if φ ≥ 0

µ2/µ1 if φ < 0



 λ(φ) =



 1 if φ ≥ 0

0 if φ < 0





and

Re =
ρ1UL

µ1

, We =
ρ1U

2L

σ
, Rep =

ρ1UL

µp1

.

Since the interface moves with the fluid, the evolution of the level set is governed by

∂φ

∂t
+ u · ∇φ = 0 . (12)

We choose this form because the interface is advected with the flow.

Since equations (2.1), (9), and (10) are expressed in terms of the vector notation, they assume

the same form in Cartesian coordinates and axisymmetric coordinates.

2.2 Boundary Conditions and Contact Models

On solid walls, we assume that both the normal and tangential components of the velocity vanish

(this must be amended at the triple point). At both inflow and outflow, our formulation allows us

to prescribe either the velocity

u = u
BC (13)

or the pressure boundary condition

p = pBC ,
∂u

∂n
= 0 , (14)

where n denotes the unit normal to the inflow or outflow boundary. Boundary conditions for the

viscoelastic stresses, when needed, are implemented using the zeroth-order extrapolation suggested

by Trebotich et al.[26].
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To numerically simulate the ejection of ink droplets, one needs to prescribe a velocity or pressure

at the inflow to the nozzle. However, only the input voltage to the piezoelectric actuator is known.

The equivalent circuit model by Sakai[17, 27] is employed to handle the problem. The equivalent

circuit, which includes the effect of ink cartridge, supply channel, vibration plate, and piezoelectric

actuator, simulates the ink velocity and pressure at nozzle inflow with a given dynamic voltage.

The equivalent circuit receives as an input the dynamic voltage to be applied to the piezoelectric

PZT actuator and simulates the ink behavior under the influence of ink cartridge, supply channel,

vibration plate, and PZT actuator. The circuit calculates an inflow pressure that drives the CFD

code. The CFD code then solves the governing partial differential equations for the fluid velocity,

pressure, interface position, and viscoelastic stresses, and feeds back the ink flow rate to the equiv-

alent circuit. The sequence is repeated as long as needed. A typical driving voltage pattern is as

shown in Figures 3. The driving voltage is such that the ink is first pulled back, pushed and fired,

and then pulled back to get ready for the next ejection.

At the triple point, where air and ink meet at the solid wall, we adopt the slipping contact line

model discussed in detail in [28]. The contact angle θ is the angle made by the air-liquid interface

and the solid, measured from the side of the liquid by approaching the contact line (i.e. the triple

point) as closely as possible. The advancing critical contact angle θa and receding critical contact

angle θr are the maximum and minimum contact angles which allow the triple point to stay. The

velocity vB is the tangential velocity of the point on the interface at 0.5µm from the triple point.

The triple point is allowed to move toward the air side if θ ≥ θa and vB > 0. The triple point

is allowed to move toward the liquid side if θ ≤ θr and vB < 0. If the triple point is not allowed

to move, the boundary condition at the solid wall is the no-slip condition. If the triple point is

allowed to move, the no-slip condition in a close vicinity of the triple point is switched to the free

slip condition and an extra surface tension force is added to accelerate the triple point. For Epson’s

dye-based ink and print head nozzle wall, θa and θr are about 80◦ and 20◦.

3 Numerical Algorithms on Rectangular Grids

In the paper, the superscript n (or n+ 1) denotes the time step, i.e.

u
n = u(t = n∆t) (15)

and so on. Given quantities u
n, pn, φn, τn, the purpose is to obtain u

n+1, pn+1, φn+1, τn+1 which

satisfy the condition of incompressibility (9). The explicit algorithm we describe will be first-order

accurate in time and second-order accurate in space.
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3.1 Temporal Discretization

The boundary condition on the nozzle wall stems from the proposed contact model. The inflow

pressure at tn+1 is given by the equivalent circuit.

3.1.1 Level set update

The level set is updated by

φn+1 = φn −∆t [u · ∇φ]n+1/2 . (16)

The time-centered advection term [u · ∇φ]n+1/2 is evaluated using an explicit predictor-corrector

scheme that requires only the available data at tn; more detail is given in section 3.2. That is, once

φn+1 is obtained, we compute φn+1/2 by using the update rule

φn+1/2 =
1

2

(
φn + φn+1

)
. (17)

3.1.2 Explicit time integration for momentum equations

An explicit discretization in time is employed to integrate the momentum equations:

u
n+1 − u

n

∆t
+ [(u · ∇)u]n+1/2

= −
1

ρ(φn+1/2)
∇pn+1 +

1

ρ(φn+1/2)Re
∇ ·

[
2µ(φn+1/2)Dn

]

+∇ · τn −
1

ρ(φn+1/2)We
[κ(φ)δ(φ)∇φ]n+1/2 .

(18)

If we define

u
∗ = u

n + ∆t

{
− [(u · ∇)u]n+1/2 +

1

ρ(φn+1/2)Re
∇ ·

[
2µ(φn+1/2)Dn

]

∇ · τn −
1

ρ(φn+1/2)We
[κ(φ)δ(φ)∇φ]n+1/2

}
,

(19)

the time-discretized momentum equations can be written as

u
n+1 = u

∗ −
∆t

ρ(φn+1/2)
∇pn+1 . (20)

We apply a second-order explicit Godunov scheme for the advection term and the central differ-

ence for the viscosity term in (19). They will be explained later. It is clear that the determination

of u
∗ needs only values at time step n.

3.1.3 Projection for u
n+1

To satisfy the incompressibility condition for time step n+ 1, we apply the divergence operator on

both sides of (20). Since ∇ · un+1 = 0, we have

∇ · u∗ = ∇ ·

(
∆t

ρ(φn+1/2)
∇pn+1

)
. (21)
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The projection equation (21) is elliptic. It reduces to a Poisson equation if the density ratio

ρ(φn+1/2) is a constant. After the pressure pn+1 is solved from equation (21), the velocity field

u
n+1 can be obtained by (20).

To simplify the implementation for arbitrary geometries, we use a finite element projection of

the form ∫

Ω

u
∗ · ∇ψdx =

∫

Ω

∆t

ρ(φn+1/2)
∇pn+1 · ∇ψdx +

∫

Γ1

ψu
BC · ndS , (22)

where ψ is the finite element weighting function, Γ1 denotes all the boundary with inflow or outflow,

and u
BC is the given boundary velocity. It is easy to see by the divergence theorem that the implied

boundary condition at Γ1 is

∆t

ρ(φn+1/2)

∂pn+1

∂n
=
(
u
∗ − u

BC
)
· n . (23)

The choice of the weighting function, as well as the approximation for the pressure and velocity,

is flexible. In our implementation, the weighting function and the pressure are chosen to be piecewise

bilinear, and the velocity to be piecewise constant.

3.1.4 Mixed algorithm for the viscoelastic stress equations

In the projection step, we obtain both the new pressure and velocity. The time-centered velocity

at cell centers can be calculated by

u
n+1/2 = (un + u

n+1)/2 . (24)

We use a mixed algorithm to integrate the viscoelastic stress equations in time:

τ
n+1 − τ

n

∆t
= −(un+1/2 · ∇)τn + τ

n · (∇u
n+1/2) + (∇u

n+1/2)T · τn

−
1

λ(φn+1/2)

(
τ

n+1 − 2
µp(φ

n+1/2)

Rep
Dn+1/2

)
,

(25)

where u
n+1/2 is the time-centered velocity field at cell centers as obtained in (24). It is noted that

the mixed algorithm is explicit on the upper-convected derivative terms and the solute viscosity

term, but is implicit on the relaxation term. After arrangement, we have

(
1 +

∆t

λp(φn+1/2)

)
τ

n+1

= τ
n + ∆t

[
−(un+1/2 · ∇)τn + τ

n · (∇u
n+1/2) + (∇u

n+1/2)T · τn
]
+

2∆tµp(φ
n+1/2)

λ(φn+1/2)Rep
Dn+1/2 .

(26)
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3.1.5 Re-initialization of the level set

To correctly capture the interface and accurately calculate the surface tension, the level set function

should remain a signed distance function to the interface as the calculation unfolds. However, if we

update the level set by (9), it will not remain as such. Instead, we periodically stop the simulation

and recreate a new level set function φ which is the signed distance function, i.e. |∇φ| = 1, without

changing the zero level set of the original level set function. In this work, we use a two-dimensional

contour plotting algorithm to locate the zero level set and then calculate the exact distances from

the zero level set to cell centers.

3.2 Advection Terms in Navier-Stokes and Level Set Equations

Referring to Figures 2a and 2b, the velocity components u
n
i,j and the level set function values φn

i,j

are located at cell centers, and the pressure pn
i,j is located at grid points. The time-centered edge

velocities and level set function values (also called the “predictors”), such as u
n+1/2

i+1/2,j, φ
n+1/2

i+1/2,j, and

so on, are located at the middle point of each edge. The algorithm for the advection terms is

based on the unsplit, second-order Godunov type upwind method introduced by Colella [9]. It is a

cell-centered predictor-corrector scheme.

In the predictor step, we use Taylor’s series to extrapolate the velocity and level set at tn

to obtain their cell edge values at tn+1/2. The partial derivative with respect to time in the

extrapolation is substituted by the Navier-Stokes equations or by the level set convection equation.

There are two extrapolated velocities and level sets for each cell edge. For example, for the cell

edge between cells i, j and i+ 1, j, one can extrapolate from the left and have

u
n+1/2,L
i+1/2,j = u

n
i,j +

∆r

2
u

n
r,i,j +

∆t

2
u

n
t,i,j

= u
n
i,j +

1

2

(
∆r −∆tun

i,j

)
u

n
r,i,j −

∆t

2
(v̂uz)i,j +

∆t

2
F

n
i,j ,

(27)

where

F
n
i,j =

{
−

1

ρ(φ)
∇p+

1

ρ(φ)Re
∇ · (2µ(φ)D) +∇ · τ −

1

ρ(φ)We
κ(φ)δ(φ)∇φ

}n

i,j

(28)

and extrapolate from the right to produce

u
n+1/2,R
i+1/2,j = u

n
i+1,j −

1

2
u

n
ξ,i+1,j +

∆t

2
u

n
t,i+1,j

= u
n
i+1,j −

(
1

2
+

∆t

2Ji+1,j
ūn

i+1,j

)
u

n
ξ,i+1,j −

∆t

2Ji+1,j
(v̄uη)

n
i+1,j +

∆t

2
F

n
i+1,j .

(29)

We use the monotonicity-limited 4th-order central difference for the evaluation of the normal

slopes, which is u
n
r,i,j in this case. The limiting is done on each component of the velocity at

tn separately. The transverse derivative term (v̂uz)i,j is evaluated by first extrapolating u to the
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transverse faces from the cell center, using normal derivatives only, and then applying the Godunov

type upwinding.

In the corrector step, we compute the Godunov upwind velocities which are then differenced to

approximate the advection terms. The detail can be found in Yu et al.[28].

The obtained edge velocities are, in general, not divergence-free. An intermediate marker-

and-cell (MAC) projection may be applied to make all the normal edge velocities divergence-free.

Suppose q is a function which is smooth enough and u
e the edge velocities obtained after applying

the Godunov procedure. We want

u
e −

1

ρ(φn)
∇q (30)

to be divergence-free. By taking the divergence of (30), we have

∇ ·

(
1

ρ(φn)
∇q

)
= ∇ · ue . (31)

The boundary condition for the intermediate projection should be compatible with the physical

boundary conditions. On solid walls, u · n = 0, which is already used in the construction of the

edge velocity u
e; thus, we have a homogeneous Neumann boundary condition on q, namely ∂q

∂n = 0.

At the inflow or outflow, if a velocity is prescribed, it is again a homogeneous Neumann boundary

condition on q, since the given velocity at tn+1/2 has been included in obtaining u
e. If a pressure

is given, the corresponding condition on q is

q =
∆t

2
∆pboundary , (32)

where the factor 2 in the denominator appears because the edge velocity is time-centered.

After qi,j is solved, we replace all the normal edge velocities by

u
n+1/2

i+1/2,j ← u
n+1/2

i+1/2,j −
1

(ρ(φ))i+1/2,j

qi+1,j − qi,j
∆r

,

v
n+1/2

i,j+1/2
← v

n+1/2

i,j+1/2
−

1

(ρ(φ))i,j+1/2

qi,j+1 − qi,j
∆z

.
(33)

3.3 Spacial Discretization of the Viscoelastic Stress Terms

3.3.1 Evaluation of the advection term

Terms in the time-discretized equation (26) need to be discretized differently in space. The first

term in the square bracket is a convection term. The following simple first-order upwind algorithm

is used to evaluate the term on uniform rectangular grids:

(un+1/2 · ∇)τn = max(u
n+1/2

i,j , 0)
τ

n
i,j − τ

n
i−1,j

∆r
+ min(u

n+1/2

i,j , 0)
τ

n
i+1,j − τ

n
i,j

∆r

+ max(v
n+1/2

i,j , 0)
τ

n
i,j − τ

n
i,j−1

∆z
+ min(v

n+1/2

i,j , 0)
τ

n
i,j+1 − τ

n
i,j

∆z
.

(34)
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3.3.2 Evaluation of the upper-convected derivative term

The second and third terms in the upper-convected derivative of equation (26), as well as the

viscosity term, are discretized using a central difference approximation. To illustrate how we

evaluate the two upper-convected derivative terms, we expand these derivatives. Since these two

terms are similar, only one term will be shown here. In axi-symmetric coordinate systems, the

second term of the upper-convected derivative can be expanded and expressed in the diadic form

[τn · (∇u
n+1/2)] = (un+1/2

,r τn
rr + un+1/2

,z τn
rz)erer + (vn+1/2

,r τn
rr + vn+1/2

,z τn
rz)erez

+(un+1/2
,r τn

rz + un+1/2
,z τn

zz)ezer + (vn+1/2
,r τn

rz + vn+1/2
,z τn

zz)ezez +
un+1/2

r
τn
θθeθeθ .

(35)

The value of the upper-convected terms is evaluated at cell centers by the use of central differences.

For example, omitting the superscripts n+1/2 and n for simplicity, we have

(u,rτrr + u,zτrz)i,j =
ui+1,j − ui−1,j

2∆r
τrr,i,j +

ui,j+1 − ui,j−1

2∆z
τrz,i,j . (36)

3.4 Interface Thickness and Time Step

Because of the numerical difficulty caused by the Dirac delta function and by the sharp change of

ρ and ν across the free surface, the Heaviside and Dirac delta functions are replaced by smoothed

functions (see Sussman et al.[23] and Yu et al.[28]). The interface thickness is 2ǫ, where the

parameter ǫ is related to the mesh size by ǫ = α
2

(∆r + ∆z). The thickness of the interface reduces

as we refine the mesh. In this work, α is set to be 1.5.

Since the temporal discretization is explicit, the time step ∆t is constrained by the CFL condi-

tion, surface tension, viscosity, and total acceleration

∆t < min
i,j

[
∆r

|u|+ [2(τrr + 1/λRe)]1/2
,

∆z

|v|+ [2(τzz + 1/λRe)]1/2
,

√
We

ρ1 + ρ2

8π
h3/2 ,

Re

2

ρn

µn

(
1

∆r2
+

1

∆z2

)−1

,

√
2h

|F |

]
,

(37)

where h = min(∆r,∆z) and F is defined in (28).

4 Numerical Results

4.1 Convergence study

For a numerical example of the viscoelastic ink jet simulation and convergence study, we consider

a typical nozzle as in Figure 1. The diameter is 25 microns at the opening and 49.5 microns at the

bottom. The length of the nozzle opening part, where the diameter is 25 microns, is 26 microns.

The slant part is 55 microns and the bottom part is 7.5 microns.
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The inflow pressure is given by an equivalent circuit which simulates the effect of the ink

cartridge, supply channel, vibration plate, PZT actuator, applied voltage, and the ink inside the

channel and cartridge. We assumed that the input dynamic voltage is given by Figure 3 with the

peak voltage at ±11.15 volts. The corresponding inflow pressure for each simulated cases will be

shown together with the droplet shapes in the next subsection. The outflow pressure at the top of

the solution domain is set to zero.

The solution domain was chosen to be {(r, z)|0 ≤ r ≤ 27.3µm , 0 ≤ z ≤ 379.7µm}. Since the

slant part of the nozzle wall is not parallel to the coordinate axes, we applied the “method of obstacle

cells” (see Griebel et al.[12]) in discretizing the nozzle geometry using homogeneous rectangular

cells. As a result, the nozzle wall has a staircase pattern (see Fig. 4). A better approximation

would result from using a body-fitted quadrilateral mesh. However, it is demonstrated in [29] that

the difference between using a staircase representation vs. a body-fitted mesh, while important for

small-scale boundary effects, is not significant in terms of computing the pinch-off time, bubble

velocity, and satellite formation. We shall extend our methodology to general quadrilateral grids

elsewhere.

The advancing and receeding contact angles are taken to be 80◦ and 20◦, respectively. The

initial meniscus is assumed to be flat and 3.5 microns lower than the nozzle opening.

For the purpose of normalization, we chose the nozzle opening diameter (25 microns) to be

the length scale and 6 m/sec to be the velocity scale. The normalized solution domain is hence

{(r, z)|0 ≤ r ≤ 1.09 , 0 ≤ z ≤ 15.19}. The density, solvent viscosity, solute viscosity, and surface

tension of the ink we consider are approximately

ρ1 = 1070 Kg/m3 , µ1 = 1.783× 10−3 Kg/m · sec ,

µp = 1.783× 10−3 Kg/m · sec , σ = 0.0396 Kg/sec2 .
(38)

We hence have the following non-dimensional parameters

Re = 90. , We = 24.3 , Rep = 90 . (39)

The density and viscosity of air are

ρ2 = 1.225 Kg/m3 , µ2 = 1.77625× 10−3 Kg/m · sec . (40)

To check the convergence of our code for the case of λ = 0.4, we list in Tables 1, 2, and 3 the

time of droplet pinch off, droplet head velocity, and droplet volume obtained from our code using

various meshes.

It is seen that the 25×350 mesh does not conserve mass well. This is because the widest part of

the ink droplet is only 7 to 8 cells wide. On such coarse meshes, level set methods incur substantial

mass loss. While remedies have been proposed, they typically maintain global mass conservation
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but suffer from local mass loss. The most effective remedy is a careful attention to re-initialization

issues, higher order schemes, and sufficient grid resolutions, see Sethian [21].

4.2 Visco-elastistic Ink Jet

Simulation results (droplet shapes and inflow pressures) for various normalized relaxation times

λ = 0, 0.4, 1.0, 3.0 are plotted in Fig. 5 to Fig. 10. The case with λ = 0 is just the case of

Newtonian ink with a dynamic viscosity 3.566 × 10−3 Kg/m · sec. It is noted that the major

droplet in the last graph of Fig. 5 has already passed the end of the solution domain and hence

can not be seen.

The inflow pressures shown in Fig. 6 and 10 reflect the reaction of a typical nozzle-ink channel-

actuator-cartridge system to the applied voltage and are also related to fluid properties. The inflow

pressures contain a higher frequency signal. It is the fundamental natural frequency of the system,

which is five to six times higher than the driving voltage frequency in this case.

Comparing results in Fig. 5 to 10, we see that, although the ink elasticity does not change the

inflow pressure by much, it dramatically influences the droplet jettability, pinch off, shape, speed,

and size. It is obvious from the droplet shape figures that the droplet pinches off later, becomes

longer in shape and smaller in volume, and slows down when the ink elasticity becomes stronger.

Since a long droplet usually separates into a major droplet and one or more satellites due to the

capillary instability, a longer and slender shape at pinch off tends to result in a smaller major

droplet and more satellites, which is unfavorable in ink jet applications. The droplet sizes for the

Newtonian case, λ = 0.4, and λ = 1.0 are respectively 11.89, 10.98, and 7.66 pico liters. The results

in Fig. 8 and Fig. 9 show that, at the given peak voltage (±11.15volts) and dynamic pattern,

the ink droplet can not be ejected when λ > 1. In the λ = 3.0 case, the droplet is at first formed

and pushed out, but does not get enough momentum to pinch off. It is finally pulled back by the

elastic effect and surface tension. To eject highly viscoelastic ink, one has to either apply higher

peak voltage or invent a new dynamic voltage pattern.

The simulated relation between the droplet volume and the peak voltage of the driving signal

is plotted in Fig. 11, where the dash line is for Newtonian ink and the solid line for viscoelastic

ink (λ = 0.4). The linear volume-peak voltage relation for Newtonian ink was first reported by Yu

et. al.[28]. The linearity facilitates the control of drop-on-demand ink jet devices. It is interesting

to see that the linear relation between the peak voltage and droplet volume remains similar for

viscoelastic ink based on the Oldroyd-B model. We suspect a nonlinear viscoelastic model may

destroy the linearity; however, this relationship will be pursued elsewhere.

In order to understand the range of Weissenberg numbers in which our algorithms effectively

compute the solution, we systematically increased λ. For values of λ up through 100 (which is
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the same as a Weissenberg number of 100, according to the definition taken by Trebotich et. al.

[26]), we observed that the results were physically reasonable. Within this regime, we were able to

effectively compute the solution to the linear system with small remaining residual. Results were

qualitatively similar to those shown in Fig. 9. For λ = 300, we were able to evolve the calculation

for a considerable length of time, however, once the viscoelastic effects became dominate (roughly

corresponding to the time when the bubble started to retract), instabilities started to quickly build,

and the linear solver was unable to effectively reduce the residual: this took place over the course

of a few time steps, starting around time step 42000.

4.3 Collision of Viscoelastic Droplets

We finally consider the simulation of viscoelastic droplet collision. As shown in the first plot of

Fig. 12, there are initially two identical pairs of major droplet and long satellite. The volumes

of the major droplets and long satellites are 7.07 and 3.94 pico liters, respectively. The two long

satellites are about 320 microns long. In Fig. 12, the velocity of the two major droplets are about

3.2m/sec. The head velocity of the two long tails is 1.65 while the tail velocity of them is 3.2m/sec.

The shapes of the droplets for λ = 0.4 at different stage of the collision are shown in the rest plots

of Fig. 12. It is interesting that the long tail evolves into a round satellite before colliding to the

major droplets. One can see that the heads of the long tails proceed slowly from t = 0 to t = 29.6µs

although their mass centers move much faster. From t = 29.6µs to t = 47.6µs, the heads of the

two long tails actually retreat a little bit due to the fluid elasticity and surface tension. We did

not see this phenomenon in a corresponding Newtonian simulation. A Newtonian droplet as long

as the tail shown in the first plot of Fig. 12 would break into at least two satellites before any part

of it hits onto the collided major droplets. The shape of the droplets after collision also depends

on the initial velocity. Fig. 13 shows the results of droplet collision with all the initial velocities

doubled. One can see that a donut shape is formed at t = 35.6µs.
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Mesh number 25× 350 50× 700 75× 1050 100× 1400

Time to pinch off 9.0002 9.0240 9.0388 9.0356

Table 1: The time of pinch off from various meshes.

Mesh number 25× 350 50× 700 75× 1050 100× 1400

t=4.80 1.240 1.267 1.273 1.272

t=6.40 1.036 1.087 1.094 1.094

t=8.00 0.998 1.044 1.049 1.050

t=9.60 0.996 1.053 1.060 1.062

Table 2: Droplet head velocities from various meshes.

Mesh number 25× 350 50× 700 75× 1050 100× 1400

t=9.24 0.6774 0.7021 0.7108 0.7110

t=9.56 0.6647 0.7001 0.7097 0.7099

t=9.88 0.6539 0.6982 0.7085 0.7088

t=10.20 0.6419 0.6965 0.7073 0.7081

t=10.52 0.6295 0.6949 0.7063 0.7074

Table 3: Droplet volumes from various meshes.
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Figure 1: The cross section view of an ink jet nozzle.
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Figure 2: Location of Variables
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Figure 3: A typical ink jet driving voltage.
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Figure 4: The zig-zag pattern due to rectangular mesh.
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t=0.µs t=5.8µs t=16.8µs t=27.8µs t=38.8µs t=49.8µs

Figure 5: Droplet ejection (Newtonian).
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Figure 6: The corresponding inflow pressure for the Newtonian case (λ = 0).
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t=0.µs t=5.8µs t=16.8µs t=27.8µs t=38.8µs t=49.8µs

Figure 7: Droplet ejection (λ = 0.4).

t=0.µs t=5.8µs t=16.8µs t=27.8µs t=38.8µs t=49.8µs

Figure 8: Droplet ejection (λ = 1.0).
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t=0.µs t=5.8µs t=16.8µs t=27.8µs t=38.8µs t=49.8µs

Figure 9: Droplet ejection (λ = 3.0).
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Figure 10: The corresponding inflow pressure for the case λ = 3.

27



10 10.5 11 11.5 12 12.5 13 13.5 14

10

11

12

13

14

15

16

Peak Voltage (Volt)

V
ol

um
e 

(P
ic

o 
lit

er
)

Figure 11: Droplet volume vs. peak voltage, dash line with circles for Newtonian case λ = 0 and

solid line with asterisks for viscoelastic case λ = 0.4.
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0.µs 29.6µs 35.6µs 41.6µs 47.6µs 65.6µs 110.µs 128.µs

Figure 12: The collision of two pairs of major droplets and long satellites, λ = 0.4.
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0.µs 29.6µs 35.6µs 41.6µs 47.6µs 65.6µs 110.µs 128.µs

Figure 13: The collision of two pairs of major droplets and long satellites with velocities doubled,

λ = 0.4
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