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Abstract 
 
   A computational framework for simulating tumor evolution based on continuum 
models is proposed. The advantages of the methodology are generality and relative 
simplicity of implementation. The Cartesian mesh/level set method developed here 
provides a computational tool for the investigation of a host of PDE-based tumor growth 
models, that may exhibit complicated tumor boundary evolution. Moreover,  extending 
the approach to three-dimensional simulations is straightforward from an algorithmic 
perspective. The methodology is tested on a simplified tumor growth model with a 
numerical implementation in two dimensions; comparisons with results obtained from a 
linear analysis of the model and with published boundary integral simulations show good 
agreement. 
 
 
1. Introduction 
 
   Over the last thirty years, research in several disciplines has led to the development of 
mathematical models to simulate the growth and macroscopic behavior of solid 
malignant tumors [16, 22]. A continuum-based model may be used to help predict the 
evolution of tumors in time and this knowledge would in turn help estimate the effect that 
various methods of treatment (e.g., chemotherapy, radiotherapy, laser radiation) would 
have on the tumor behavior as well as on the surrounding healthy tissue and, ultimately, 
on the host.   
   Malignant solid tumors generally are described as masses of tissue formed as a result of 
abnormal and excessive proliferation of mutant (atypical) cells, whose division has 
escaped the mechanisms that control normal cellular proliferation. This abnormal 
proliferation of atypical cells in time leads to an uncontrolled growth, extending to the 
adjacent surrounding tissues, infiltrating and invading them; this invasion is local at first–
causing primary tumors, but malignant cells have the ability of migrating through the 
blood vessels and/or the lymphatic system towards other parts of the body, giving rise to 
secondary tumors; this process is called metastasis and it is the one responsible for the 
host death.  
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   There are different stages of a malignant tumor evolution; described roughly, the main 
stages are the cellular stage and the macroscopic stage. The cellular stage refers to the 
early stage of a tumor evolution, when tumor cells are not condensed yet in a 
macroscopically observable mass. The macroscopic stage corresponds to that phase of a 
tumor evolution when clusters of atypical (malignant) cells condense together into a 
quasi-spherical observable mass (nucleus); this stage is sub-divided into two subsequent 
phases-the avascular phase and the vascular phase. During the avascular phase, the tumor 
obtains nutrients and “feeds” itself via diffusion processes alone, with nutrients already 
existing in the environment.  In the second phase, called the vascular phase, when the 
tumor grows more rapidly through what is called angiogenesis (i.e., the birth of new 
blood vessels), malignant tumor cells secrete chemicals that have the ability to diffuse 
into the surrounding healthy tissues and stimulate the growth of new capillary blood 
vessels; the newly born blood vessels penetrate into the tumor mass feeding it with 
nutrients and leading to a rapid growth of the tumor. Tumor growth (spread of malignant 
cells) occurs basically via two mechanisms: when fed with a sufficient amount of 
nutrient, malignant cells divide (cellular mitosis); when the density of malignant cells in a 
specific volume becomes too high, the cells are compressed by their neighbors, so they 
tend to move to less compressed areas–where they are allowed to continue the division 
process–and this process is repeated.  
   Due to the extremely complex nature of the biological systems underlying the behavior 
in tumors and to the limited understanding of tumor growth mechanisms, developing 
useful models (mathematical, computational or both) is a difficult task. Currently, there 
are two major approaches in solid tumor growth modeling: one is via a “continuum 
model” that describes the evolution of the tumor in terms of systems of partial differential 
equations and/or non-linear integro-differential equations; the second is via a “discrete 
approach” employing cellular automata (CA) or lattice-based models. For the 
macroscopic stage of tumor evolution, the continuum approach may offer the most 
generality. Providing all of the model parameters can be estimated, the advantage of a 
continuum model is that it provides a systematic means for evaluating the role played  by 
individual physical mechanisms.. However, the more complex the continuum model−the 
more difficult the computational simulations, since a continuum model will generally 
yield a nonlinear moving boundary problem described by systems of partial differential 
equations. The starting point for many continuum models is the pioneering work of  
Greenspan in the 1970's (see [22] and references therein). In recent years a variety of 
macroscopic continuum models have been derived employing analogies with inorganic 
systems (theory of mixtures, multiphase flow [18, 19]). While currently quite a few such 
complex models exist in the literature, computational simulations in arbitrary geometries 
and higher dimensions to further investigate and validate these models are still largely 
missing.  
   The goal of the present work is to introduce a general computational framework for 
obtaining multi-dimensional solutions to continuum-based models for numerically 
simulating tumor growth. The methodology is appropriate for complex models involving 
coupled nonlinear PDEs with moving boundaries in multi-phase domains. A fixed 
Cartesian grid is used to discretize the field equations–which allows good flexibility in 
the numerical implementation–coupled with a level set method to capture the moving 
tumor boundary. Various level set implementations have been successfully employed in 

 2



simulating a broad range of moving boundary problems in fluid mechanics, combustion, 
materials science, geophysics and computer vision. It seems natural to extend their 
application to moving boundary problems in biological applications.  
   The Greenspan type model investigated in [1] is considered to illustrate and test the 
feasibility of the computational method proposed. This model is appealing for 
computational testing purposes for two reasons: first, it consists of two decoupled linear 
elliptic equations with constant coefficients, while the advance of the tumor boundary is 
governed by an equation involving only two model parameters; second, accurate, two-
dimensional numerical simulations using a boundary integral method have been 
published in [1] and are available for comparison.    
   The structure of the paper is as follows: Section 2, the mathematical tumor growth 
model employed in [1] is reviewed; Section 3 provides a brief description of the general 
formulation of the level set method; Section 4 presents the numerical algorithms in detail; 
Section 5 contains the numerical experiments performed and a comparison of the results 
with the boundary integral simulations published in [1]; finally, Section 6 contains some 
remarks regarding further research. 

 
2. A simple mathematical model of tumor growth 

 
   The tumor growth model employed to develop the computational methodology is 
described in detail in [1], and is only summarized here. Consider a tumor occupying a 
time-varying domain . The field variable )(tD ),( txrσσ =  represents the concentration of 
nutrient inside the tumor. It is assumed that the tumor is non-necrotic (no region 
comprised of dead cells) and that there are no inhibitor chemical species. Nutrient is 
supplied by the blood vessels at a rate ),( BσσΓ , where Bσ  is the concentration of 
nutrient in the blood (assumed constant), at a linear rate; the nutrient is absorbed by the 
living tumor cells at a linear rate as well.  Based on the assumption that the time scale 
necessary for the tumor to undergo significant changes in volume (~days) is typically 
much larger than the nutrient diffusion time scale (~minutes), the nutrient diffusion inside 
the tumor is considered quasi-steady. Thus, the continuum mass balance equation for the 
nutrient inside the domain occupied by the tumor yields the following diffusion equation 
for ),( txrσσ = : 

          (2.1) )()(0 2 tDinD NBBN σδσσγσ −−−∇=
where  is the diffusion coefficient (constant), the term ND )( BB σσγ −− models the blood-
tissue nutrient transfer rate (source term), while the last term σδ N ( Nδ constant) 
represents the consumption of nutrient by the living tumor cells (sink term). Further, the 
tumor is modeled as an incompressible fluid with a velocity field ),( txuu rrr

=  obeying the 
continuity equation in : )(tD

 )(tDinu TT δσγ −=•∇
r            (2.2) 

where the first term in the right hand side expression represents the tumor cell rate of 
proliferation (mitosis)–assumed a linear function of the nutrient, while the second term 
represent the tumor cell rate of death (apoptosis). Both Tγ and Tδ in Eq.(2.2) are 
assumed constant. The velocity field ),( txuu rrr

=  is related to the pressure gradient using a 
relationship similar to Darcy’s law: 

 3



             (2.3) )(tDinpwu T ∇−=
r

where represents the tumor cell mobility (chemotaxis), assumed constant, and Tw
),( txpp r

=  is the fluid pressure inside the domain occupied by the tumor . 
Combining eqns. (2.2) and (2.3) yields: 

)(tD

 )(2 tDin
ww

p
T

T

T

T δσγ
+−=∇           (2.4) 

The coupled linear equations (2.1) and (2.4) represent the governing field equations for 
the model state variables ),( txrσσ =  (the nutrient concentration inside the tumor) and 

),( txpp r
=  (the pressure inside the tumor).  

        It is assumed that the nutrient concentration at the tumor boundary is the nutrient 
concentration existent in the tissue outside the tumor–presumed constant and denoted by 

outσ , i.e., 

 outtD σσ =∂ )(              (2.5) 
The pressure is assumed to satisfy the Young-Laplace relationship on the boundary: 

 γκ=∂ )(tDp              (2.6) 
where γ represents the surface tension (here corresponding to cell-cell adhesion forces), 
while κ  is the local curvature. The normal velocity of the tumor boundary, V, is the 
normal component of the fluid velocity at the boundary: 

 
)()( )()( tDtD

npwnuV tDTtD ∂∂
•∇−=•= ∂∂
rrr          (2.7) 

where represents the unit outward normal to the tumor boundary . 
)( tD

n
∂

r )(tD∂

 
   Following [1], the model equations and variables are made dimensionless by 
introducing: 

 

3
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1

)(

2
1

D

T
R

NB

N
D

L
w

DL

γλ

δγ

=

+
=

            (2.8) 

 
where  represents a diffusion-related length scale and represents a relaxation time 
scale.  The following dimensionless variables are defined:  

DL 1−
Rλ

DL
xx
rr

=   (dimensionless “space”) 

 Rtt λ=    (dimensionless time) 

outσ
σσ =  (dimensionless nutrient concentration) 

  

 
γ

DLpp =  (dimensionless pressure). 
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The governing equations (2.1) and (2.4), the boundary conditions (2.5) and (2.6) and the 
equation of the moving boundary (2.7) become 

),(:)(0
)(

12 txDtin
NBout

BB

r
=Ω=Ω=

+
+−∇

δγσ
σγσσ       (2.9) 

 

)(2 tinp
R

T

R

outT Ω=Ω+−=∇
λ
δσ

λ
σγ        (2.10) 

 
1=Ω∂σ            (2.11) 

κ=Ω∂p            (2.12) 

Ω∂Ω∂ •−∇= npV r           (2.13) 
  
where in all the above dimensionless equations the derivatives are with respect to the 
dimensionless variables x

r
and t . Further, let  

outTM σγλ =            (2.14) 
be the characteristic mitosis rate and define 

NB

B

out

BB
δγ

γ
σ
σ

+
=           (2.15) 

(a dimensionless parameter indicating the relative degree of the tumor vascularization). 
Substituting Eq.(2.14) into Eq.(2.10) yields: 

 )(2 tinp
R

T

R

M Ω=Ω+−=∇
λ
δσ

λ
λ         (2.16) 

while substituting Eq.(2.15) into Eq.(2.9) yields: 
 )(0)(2 tinB Ω=Ω=−−∇ σσ         (2.17) 

Further, if a new dimensionless nutrient “concentration” is defined as: 

B
B

−
−

=Γ
1
σ            (2.18) 

then from Eqns.(2.17) and (2.11) the following boundary value problem is obtained for 
: Γ

 
⎪⎩

⎪
⎨
⎧

=Γ

Ω=Ω=Γ−Γ∇

Ω∂ 1

)(02 tin
         (2.19) 

where the “bar” notation in )(tΩ=Ω  has been dropped for simplicity. Finally, the 
model parameters can be further reduced by introducing the following two dimensionless 
parameters: 

 

B

B
A

BG

M

T

R

M

−

−
=

−=

1

)1(

λ

δ
λ
λ

          (2.20) 
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Using the above parameter definitions and Eq.(2.18), Eq.(2.16) can be written as follows: 
 )()(2 tinAGGp Ω=Ω=Γ+∇         (2.21) 

If a new dimensionless “pressure” is defined as: 

 
d

xxAGGpP
2

)1(
vv

•
−Γ−−=          (2.22) 

where represents the dimension of the domain occupied by the tumor (d=1,2 or 3) , 
then the following boundary value problem is obtained for 

d
P : 

 
⎪⎩

⎪
⎨

⎧

•
−=

Ω=Ω=∇

Ω∂
Ω∂ d

xx
AGP

tinP

2
)(
)(02

rr

κ
         (2.23) 

where the “bar” notation in )(tΩ=Ω and x
r

 has been dropped for simplicity. Lastly, by 
substituting Eq.(2.22) into Eq.(2.13), the dimensionless normal “velocity” of the tumor 
boundary becomes (again, dropping the “bar” notation): 

 

 
d
xn

AGnGnPV Ω∂
Ω∂Ω∂Ω∂Ω∂

•
−•Γ∇+•−∇=

)( rr
rr       (2.24) 

The sets of equations (2.19) and (2.23) represent two decoupled linear elliptic boundary 
value problems for the unknowns Γ and P  respectively; after they have been solved, the 
new location of the tumor boundary is found using the normal velocity given by 
Eq.(2.24). 
        The regimes of tumor growth represented by the model can be characterized in 
terms of the parameters G and A as follows: 
 

1. Low vascularization regime: . 0,0 >≥ AG
In the low vascularization regime (including the avascular stage of growth), there 
are little or no blood vessels  reaching inside the tumor to supply nutrient, which 

for the model here is characterized by 1<<
out

B

σ
σ   

(i.e., the nutrient supplied by the blood vessels in this regime is considerably 
lower than the  nutrient existing in the tissue outside the tumor volume). 
In this regime Eq.(2.15) yields 1<<B , and subsequently, from the first Eq.(2.20), 

.Also, in this regime, the apoptosis (tumor cell death due to insufficient 
nutrient levels) rate and the cellular mitosis rate are  typically balanced, so it can 
be assumed that: 

0≥G

 1~
M

T

λ
δ . 

Since 1<<B , it can be further inferred that 
M

TB
λ
δ

< , and therefore from the 

second Eq.(2.20) it follows that . 0>A
 
 
 

 6



2. Moderate vascularization regime: 0,0 ≤≥ AG . 
In the moderate vascularization regime, more blood vessels have developed that 
can bring additional amounts of nutrients into the tumor. However, still the 
dominant role in feeding the tumor is played by the nutrients existent in the tissue: 

 1<
out

B

σ
σ . 

 
Once again in this regime, 1<B , and . 0≥G
Also, in this regime for the present model, since additional amounts of nutrients 
are reaching inside the tumor, it can be assumed that the apoptosis rate slows 
down, while the mitosis rate is promoted, such that  

 B
M

T ≤
λ
δ . This, in turn, leads to . 0≥A

3. High vascularization regime: .00,0 ><< AorAG  
In the high vascularization regime, a dense network of blood vessels is developed 
and brings considerable amounts of nutrient inside the tumor. This regime is 

characterized by 1>>
out

B

σ
σ   

From Eq. (2.15), 1>>B , and subsequently, 0<G . 

In this regime,  corresponds to dominant apoptosis (0<A B
M

T >
λ
δ ), while 

(i.e., 0>A B
M

T <
λ
δ ) can indicate dominant mitosis (promoted by the high levels 

of nutrients now reaching inside the tumor volume) as well as balanced 
apoptosis/mitosis. 
  

These three regimes of growth have been clearly identified in [1], based on the evolution 
of a radially symmetric tumor (both in 2D and in 3D). The authors have found that in the 
low vascularization regime, the tumor evolution is monotonic and always leads to a 
stationary radius (depending on the initial tumor radius, either bounded growth or 
bounded shrinkage may occur), while in the moderate vascularization regime unbounded 
growth occurs regardless of the tumor initial radius, and finally, in the high 
vascularization regime unbounded growth may occur depending on the initial radius and 
the sign of the parameter (for instance, if the cell apoptosis is dominant in this regime, 
then the tumor can shrink and disappear).  

A

 
 

3. Level set formulation 
 

As previously defined, let )(tΩ=Ω  denote the domain occupied by the tumor. Let 
denote the region outside the tumor volume, and )(toutout Ω=Ω )()( tt Ω∂=Σ=Σ  (a 

curve in 2D and a surface in 3D, respectively) be the boundary of the tumor, separating 
the tumor and the outside tissue. This boundary evolves in time with a normal velocity 
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V given by Eq. (2.17), and the problem is finding the location of the tumor boundary at 
later moments in time starting from a known location at the initial moment of time 

. One way to do so is by employing the level set method  introduced by 
Osher and Sethian in [24] and  based in part on the theory and numerics of curve 
evolution developed by Sethian in [23].  The basic idea behind the level set method is to 
introduce an additional variable, denoted by      

)0(0 =Σ=Σ t

          ],0[,),,( ∞∈Ω∪Σ∪Ω∈= txtx outrrϕϕ ,  
responsible for capturing the front )(tΣ=Σ  in an implicit fashion at each moment in 
time: 

{ }.0),()( ==Σ=Σ txxt rr ϕ  
The function ),( txrϕϕ = is the level set function. First, the initial level set function value 
is set equal to the signed Euclidean distance function to the tumor boundary at the initial 
moment of time (taken negative inside the tumor and positive outside): 

 

⎪
⎩

⎪
⎨

⎧

=Ω∈Σ

Σ∈
=Ω∈Σ−

=

)0(,),(

,0
)0(,),(

)0,(

0

0

0

txxdist

x
txxdist

x
outrr

r

rr

rϕ          (3.1) 

 
At any moment in time, the location of the tumor boundary is given by the zero level set 
of the level set function. For a particle on the front with the path )(txx rr

=  one has: 
0)),(( =ttxrϕ   

The kinematics governing the motion of the boundary yields: 
 

0,0)()),(( >∀=•∇+
∂
∂

= tt
dt
xdttx

tdt
d r

rϕϕϕ  

The outward unit normal on the boundary is given in terms of the level set function by: 

           
ϕ
ϕ

∇
∇

=nr              (3.2) 

Substituting (3.2) in the above equation leads to the evolution equation for the level set 
function (initial value formulation): 

 0=∇+
∂
∂ ϕϕ F

t
            (3.3) 

where 0,),,( >Ω∪Σ∪Ω∈= txtxFF outrr  represents what is typically called an 
“extension velocity” field (i.e., defined  everywhere, such that it always matches the 
given expression of the normal velocity V on the tumor boundary Σ ): 
 )()( ),(),( txtx txVtxF Σ∈Σ∈ = rr

rr            (3.4) 

Eq. (3.3) correctly moves the boundary with the prescribed normal velocity given by 
(2.24).  In terms of the level set function, the mean curvature is expressed as:   

2
3

22

22

)(

2
)(

yx

xyyxyyxyxxn
ϕϕ

ϕϕϕϕϕϕϕ
ϕ
ϕκ

+

+−
=

∇
∇

•∇=•∇=
r        (3.5) 
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As compared to an explicit front-tracking formulation, there are  considerable advantages 
of the level set formulation: 

• the domain occupied by the tumor at each moment of time (where the model 
equations (2.19), (2.23) must be solved for the unknowns Γ  and P respectively) is 
apparent from the sign of the level set function (here taken negative); 
• the geometric properties of the tumor boundary (normal and curvature) are readily 
available from (3.2) and (3.5) above; 
• the same formulation holds regardless of the number of spatial dimensions (1,2 or 
3); 
• enhanced implementations such as “the narrow band method” introduced by 
Adalsteinsson and Sethian in [3] or “the fast marching method” (see [2]) are available 
that make the boundary capturing more computationally  efficient. 

      On the other hand, some challenges arise when implementing the level set method: 
• construction of the “extension velocity” field in the level set equation (3.3) 
(generally, there is no natural choice for this field which is only defined on the 
interface itself); 

F

• re-initialization of the level set function ϕ  as a signed distance to the interface 
 is needed in two instances: first, steep or flat gradients can develop that will in 

turn affect the estimation of the geometrical properties of the interface via eqns. (3.2) 
and (3.5); second, if a “narrow band” type method is used, then the level set function 

)(tΣ

ϕ  must be re-initialized to a signed distance function  each time the “narrow band” is 
rebuilt.  

 
 
3.1 Construction of the “extension velocity” field off the interface 
 
   One way of extending the normal velocity off the interface is extrapolation in the 
normal direction, following characteristics that flow outward from the interface, such that 
the velocity is constant on rays normal to the interface. This method, introduced by 
Malladi and Sethian [25], works particularly well when no other information is available 
except for what is known on the interface–as is the case here. At points adjacent to the 
interface, on each side, the “extension velocity” field is first constructed by hand as 
follows: standing at a grid point adjacent to the interface, either inside the domain 
occupied by the tumor or outside, find the closest point on the interface whose velocity is 
given by Eq. (2.24) and copy its velocity. The velocity values at the adjacent points are 
subsequently kept fixed and framed as boundary conditions for the following linear 
Hamilton-Jacobi equations (see [5] for the details): 

F

 

)(0 tinFnF outΩ=∇•+
∂
∂ r

τ
           (3.6) 

)(0 tinFnF
Ω=∇•−

∂
∂ r

τ
           (3.7) 

 
In the above equations (3.6) and (3.7), the local unit outward normal is defined by 
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),(
),(),(

tx
txtxnn r

r
rrr

ϕ
ϕ

∇
∇

==             (3.8) 

Here τ designates a pseudo-time for the relaxation of the equations to steady-state at each 
moment of time . At steady-state, the corresponding solution t ),( txFF r

= will be 
constant on rays normal to the interface. Construction of the extension velocity field in 
this manner has the advantage that it tends to preserve the signed distance function during 
the interface evolution in time. 
 
3.2 Re-initialization of the level set function ϕ  
 
   As pointed out above, in general, a procedure is needed to reset the level set function ϕ  
as a signed distance function to the interface (in this case, the tumor boundary) from time 
to time. It is easy to see that the location of the interface { }0),()( ==Σ=Σ txxt rr ϕ  in 
time is independent of the particular choice of the initial data )0,( =txrϕ  as long as its 
zero level set function coincides with the initial (known) location of the 
interface: { 0)0,()0(0 ====Σ=Σ txxt rr ϕ }. Thus, re-initialization at some moment of 
time  can be regarded as the process of replacing the current level set function t ),( txrϕ  
by another function ),( txreinit rϕ  that has the same zero contour but is better behaved; 

),( txreinit rϕ  becomes the new level set function to be used as initial data until the next re-
initialization. 
   As was the case with building the extension velocity field, there is more than one way 
of re-initializing the level set function ϕ  to a signed distance function to the interface [2, 
5, 8]. One approach [5] employs the following “re-initialization equation”: 
 

 
⎪⎩

⎪
⎨

⎧

===

=−∇+
∂

∂

),()0,(

0)1)((

0

0

txx

S

reinitreinit

reinitreinit
reinit

rr ϕτϕϕ

ϕϕ
τ

ϕ
          (3.9) 

 
where  is a sign function taken as +1 in , -1 in )( 0

reinitS ϕ )(toutΩ )(tΩ  and 0 on the 
interface. Here again, τ designates a pseudo-time for relaxing the equation to steady-state 
at a fixed real time . By solving Eq. (3.9) to steady-state, the resulting solution t

),( txreinit rϕ  will be a signed distance function to the interface )(tΣ=Σ  at the particular 
time  in the model evolution. For better numerical behavior, the “sign” function in 
Eq.(3.9) is "smeared out" as follows: [5]: 

t

 
22

0

0
0

)(
)(

h
S

reinit

reinit
reinit

+
=

ϕ
ϕϕ          (3.10) 

where represents the size of the fixed Cartesian mesh chosen to discretize the problem. h
In Eq. (3.9), points near the interface outside the domain occupied by the tumor use the 
points inside the domain occupied by the tumor as boundary conditions and vice versa. 
When this circular loop of dependencies eventually balances out, a steady-state solution 
is reached. 
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   If the initial is relatively smooth and balanced across the interface, then solving 
Eq.(3.9) to steady-state works rather well [5]. When a “narrow band” level set method is 
employed, one is particularly interested in resetting the level set function as  accurately as 
possible to a signed distance function in a narrow region (tube/band) around the interface. 
This generally happens relatively fast if the initial 

reinit
0ϕ

reinit
0ϕ∇  does not depart substantially 

from 1 at points adjacent to the interface on each side, even if a re-initialization has not 
been performed recently. An alternate choice [5, 8], particularly useful if the initial 

reinit
0ϕ∇  is significantly far from 1, is to use: 

   
222)(

)(
h

S
reinitreinit

reinit
reinit

ϕϕ

ϕϕ
∇+

=        (3.11) 

in Eq.(3.9) instead of . )( 0
reinitS ϕ

   The advantage of solving equation (3.9) in one pass, rather than solving two separate 
nonlinear Hamilton-Jacobi equations–one outside the domain occupied by the tumor and 
one inside, that require preliminary initialization by hand at the grid points adjacent to the 
interface on each side–is that it readily allows for higher order spatial discretization. The 
disadvantage is that numerical errors will tend to move the interface to some degree. This 
can become a problem if re-initialization is performed too often–especially for unstable 
problems, where it translates into mass/volume loss [2].  
 
4. Description of the numerical algorithm and discretization procedures 
 
   The goal here was to develop a general computational framework for use in the 
numerical investigation of a broader range of tumor growth models. The level set method 
provides good generality for handling relatively simple or quite complex tumor boundary 
evolution. Finite differences were chosen to discretize the model equations because of the 
flexibility that they allow. Another objective was straightforward implementation from an 
algorithmic point of view. The resulting computational framework can be used for testing 
and investigating various existing models or new ones that are being developed. The 
ideas illustrated here for the tumor growth model presented in Section 2 have been 
successfully applied to obtain numerical simulations in two dimensions using a 
substantially more complex nonlinear tumor growth model [21].  
     The following solution formulation is targeted on generality and computational 
simplicity, but more optimal approaches for the particular problem investigated will be 
pointed out whenever appropriate. The numerical procedure for the present model solves 
the pair of Eqs. (2.19) and (2.23), and then updates the location of the tumor boundary 
using Eq.(2.24). The solution algorithm is outlined in the steps listed below: 
 
1) It is assumed that the level set function ),( txrϕ  is known at the current time level  and 
is equal to the signed distance function (prescribed initially, or as a result of re-
initialization at later times). As a result, the current location of the interface is implicitly 
known.  A“narrow band” (tube) is built around the interface, with a user-prescribed width 
(the optimal width for a specific problem depends on the quantities involved, as well as 
the number of re-initializations employed). Since 

t

),( txrϕ  is assumed close to a signed 
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distance function, the narrow band is defined by locating the points using the following 
criterion: 

         { } Twidthtxx
not.

),( =<
rr ϕ .  

 The grid points inside the tube and the grid points near the tube edge are marked 
distinctly  
 
2) With the location of the boundary implicitly captured by the current level set function 

),( txrϕ , Eqs. (2.19) and (2.23) are solved to obtain the numerical solution for  and P at 
the current time step t . 

Γ

 
3) With the values of  and Γ P  determined at the current time step t , construct the 
“extension velocity” field ),( txFF r

=  as described in Section 3.1, at points  inside the 
narrow band tube 

xr

T . 
 
4) With the extension velocity field computed at points inside the tube T , the level set 
equation (3.3) is solved inside the tube to update the level set function at the next time 
step. The values of the level set function at grid points distinctly marked near the tube 
edge in Step 1 are frozen, as well as the values of the level set function outside the tube 
T . The following conditions are monitored: 

 
a) whether the newly updated tumor boundary (interface) approaches  the tube edge 

to within a specified tolerance (if so, then the values kept frozen in Step 4, which 
serve as artificial numerical boundary conditions, will severely affect the actual 
location of the interface);  

b) whether steep or flat gradients are developing in the newly updated level set 
function, particularly at points neighboring the interface. 
 

Steps 2-4 are repeated until either situation a) or b) occurs; when this happens, the narrow 
band (tube) T must be rebuilt and the procedure begins with Step 1 again. Employing this 
Narrow Band Level Set Method is computationally very efficient (especially when 
constructing the extension velocity field); such an approach is well-suited when only  the 
evolution of the interface itself is of interest (i.e., the zero level set)–as it is the case for 
the tumor growth problem.  
    In what follows, the two-dimensional case is considered. The domain occupied by the 
tumor Ω is embedded into a larger fixed, time-independent, computational domain D, 
that is discretized using a uniform Cartesian with .hyx =∆=∆  The region outside of the 
tumor (usually representing healthy tissue) is denoted by =Ωout D . The tumor 
boundary will often be referred to as the “interface” – separating the domain occupied by 
the tumor from the outside tissue. 

Ω\

    Fig.1 is a schematic diagram of the tumor boundary located within the narrow band on 
the Cartesian grid. A “regular” grid point (either inside the domain occupied by the tumor 
or outside) shall denote a point on the fixed Cartesian grid that has no neighbors on the 
tumor boundary, in either the horizontal ( x ) direction or the vertical ( ) direction, while 
an “irregular” grid point (on each side of the tumor boundary) corresponds to a point on 
the fixed Cartesian grid that is adjacent to the boundary, either horizontally or vertically. 

y
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The discrete approximations of the geometric variables (i.e. the normal and the curvature) 
can be found in Appendix A. 
 
4.1 Discretization of the governing equations 
 
    The procedure for solving the boundary value problem (2.23) to determine the 
dimensionless “pressure” field ),( txPP r

=  is described in detail below. The procedure 
for the dimensionless nutrient “concentration” ),( txrΓ=Γ  is similar and in fact, much 
simpler, due to the type of boundary condition imposed. Recalling (2.23), the problem to 
be solved for ),( txPP r

=  is given by: 
 

⎪⎩

⎪
⎨

⎧

•
−=

Ω=Ω=∇

Ω∂
Ω∂ )2.4(

4
)(

)1.4()(02

xx
AGP

tinP
rr

κ

            
 
Suppose that the current time is tntn ∆= , and the current level set function 

 is known at all Cartesian grid points . Then the current 
domain occupied by the tumor is 

)),(),((, n
n

ji tjyixϕϕ = ),( ji
)( nn tΩ=Ω . Eq.(4.1) with the boundary condition (4.2) 

must be solved at points nji Ω∈),(  to obtain the discrete solution  
at the current time step. The grid points  marked as “irregular” on each side of the 
tumor boundary in Fig.1 are determined by checking to see if the level set function 
changes sign either in the horizontal direction, or in the vertical direction, or in both; if 
so, that means the interface cuts through the grid cell containing the current grid point, 
and that makes it an “irregular” grid point. Other grid point are marked as “regular”. At 
“regular” grid points , the standard 5-points stencil is used to discretize the 
Laplace operator in (4.7): 

)),(),((, n
n
ji tjyixPP =

),( ji

nji Ω∈),(

 

 0
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2
1,,1,

2
,1,,1 =

+−
+

+− −+−+

h
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ji
n
ji

n
ji

n
ji

n
ji

n
ji         (4.3) 

Consider now the case of an “irregular” horizontal grid point , where, for 
instance,  and . Then there is an interface point in the horizontal 
direction, in between  and 

nji Ω∈),(
0, <n

jiϕ 0,1 >+
n

jiϕ
)(ix )1( +ix , call it . By linear interpolation of the level set 

function, the value of can be determined as follows: 
bx

bx

 )10()()(
.

,,1

, <<=
−

−=−
+

xx

not

n
ji

n
ji

n
ji

b hhixx θθ
ϕϕ

ϕ
        (4.4) 

Next, a second-order interpolating polynomial in the x-direction is formally 
constructed using respectively. Note that  is 
computed from the boundary condition (4.2) applied at the boundary point , 

)(xp
n

ji
n
jinbx PPtjyxPh ,1, ,),),(,(,, −θ )),(,( nb tjyxP

))(,( jyxb
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where the curvature is estimated as described in Appendix A and  is known from (4.4). 
Thus, with the expressions of the interpolated polynomial formally computed, the second 
derivative is approximated as follows: 

bx

            )(
''

2
,

2

)( ixx

n
ji xp

x
P

=≈
∂

∂
            (4.5) 

A similar procedure is used in the y-direction. Of course, there will be “irregular” grid 
points that might have neighbors on the boundary both in the x- and y-direction. 
Finally, considering both “regular” grid points as well as “irregular” ones inside the 
domain occupied by the tumor at the current moment of time, the system of discrete 
equations that must be solved to determine the unknowns 

nji
n
jiP Ω∈),(, }{ can be cast in the 

general form: 
 
          (4.6) n

n
ji

n
ji

n
ji

n
jiji

n
ji jiPPPPfP Ω∈= +−+− ),(),,,,( 1,1,,1,1,,

where  
 
               (4.7) ++= −+−+−

n
jijiji

n
ji

n
ji

n
ji

n
jiji PbaPPPPf ,1,,1,1,,1,1, ),,,( n

jiji
n
jiji

n
jiji PePdPc 1,,1,,,1, +−+ ++

A straightforward and general way of solving the system (4.13) for average mesh sizes is 
by the iterative Gauss-Seidel method. The use of a Gauss-Seidel method here has the 
advantage of generality and it only requires very modest memory storage. Numerical 
tests were performed to examine the optimal stopping criterion in the 2-norm, 

 tolPP
nji

Mn
ji

Mn
ji <−∑

Ω∈

+ 2
1

2

),(

,
,

1,
, )( . 

For the present calculations, for values , no differences were observed 
in the converged solution of (4.6); therefore, the value  was used for all the 
solutions. 

126 1010 −− ≤≤ tol
610−=tol

 
4.2      Numerical construction of  the “extension velocity” field 
 
    As described in Section 3.1, the extension velocity field ),( txFF r

=  at a particular 
moment of time t  (when the level set function ),( txrϕϕ =  and the model field variables 

),(),,( txtxPP rr
Γ=Γ= are known) is obtained by solving Eqs. (3.6) and (3.7) to steady-

state. First, at grid points adjacent to the interface on each side marked as “irregular” in 
Fig.1, the extension velocity field is constructed by hand. Two ways of doing this are 
described in Appendix B. A numerical estimate of the normal velocity is needed at points 
on the interface erfacexint

r  –  whose expression is given by Eq. (2.24): 

2

)(
)()(),( ),int(

intint ),(),(int
terfacex

erfaceerface

xn
AGnGnPtxV txtxerface

r

rr
rrr

rr

•
−•Γ∇+•∇−=     (4.8) 

The local unit outward normal to the interface ),( int txnn erface
rrr

= in (4.8) is computed as 
described in Appendix A. Then, the normal derivatives in (4.8), both for P and , are 
approximated by using backward differencing in the normal direction; here, a second-

Γ
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order backward difference formula is employed (more explanations on this particular 
choice in section 5. ahead): 
 

h
tnhxPtnhxPtxP

nP erfaceerfaceerface
tx erface 2

),2(),(4),(3
)( intintint

),( int

rrrrr
r

r
−+−−

≈•∇       (4.9) 

where, according to the boundary condition (2.23) on P , 

4
))()((

),(),( intint
intint

erfaceerface
erfaceerface

xx
AGtxtxP

rr
rr •

−= κ       (4.10) 

and the curvature ),( int tx erface
rκ is computed as described in Appendix A. 

The terms ),( int tnhxP erface
rr

−  and ),2( int tnhxP erface
rr

−  in (4.9) above are estimated using 
bilinear interpolation from the known values of P at the 4 neighboring corners on the 
fixed Cartesian grid at the current moment of time . Similarly for t Γ , where the value 

1),( int =Γ tx erface
r , according to the boundary condition in (2.19). Finally, eqns. (3.6) and 

(3.7) respectively must be solved to steady-state, within the current tube T , by using the 
previously estimated values of the extension velocity at irregular grid points as boundary 
conditions. Everywhere else inside the current tube the extension velocity field is 
initialized to 0.  
    Equations (3.6) and (3.7) are each a linear hyperbolic equation of the form: 

0),(),( =
∂
∂

+
∂
∂

+
∂
∂

y
Fyxb

x
FyxaF

τ
        (4.11) 

with and  given. Here ),( yxa ),( yxb τ  represents a pseudo-time that is distinct from the 
real  time  (which is fixed for Eq.(4.26)). A regular first order up-wind differencing 
scheme [13, 14] is used to discretize Eq.(4.26) : 

t
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The time-step τ∆ must obey the CFL stability condition: 

 1}{max ,,

,
≤+∆

h
b

h
a jiji

ji
τ          (4.13) 

Since in this case, 1, ≤jia  and 1, ≤jib , choosing a time step 
2
h

≤∆τ  will automatically 

satisfy (4.13). 
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    In the numerical experiments presented in section 5., 
5
h

=∆τ  and equation (4.12) is 

iterated until τ∆<−+ 2
,

1
,,

max hFF k
ji

k
jiji

(consistent with the order of the spatial 

approximation). The resulting solution )}({}{ ,, tFF jiji = is the extension velocity at the 
current real time t . 
 
4.3 Discretization of the level set equation and the re-initialization equation 
 
    The level set equation (3.3) is discretized using a conservative scheme for nonlinear 
Hamilton-Jacobi equations with convex Hamiltonian [2]: 
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and ( ) stands for the backward differencing approximation of the first-order 
partial derivative in the x (y)–direction, while ( ) stands for the forward 
differencing approximation. The above scheme is a first order (forward Euler) in time.  

xD− yD−

xD+ yD+

The backward and forward difference approximations in (4.15) and (4.16) can be 
computed by employing first-order spatial discretization, or via higher-order schemes, 
such as HJ ENO or WENO [5].  The time step in (4.14) must obey the CFL condition for 
stability: 

 
2

max ,,

hFt n
jiji

≤∆           (4.17) 

   In practical applications, the level set motion generally tends to show much less 
sensitivity to temporal accuracy (once the time step is carefully chosen to insure 
convergence), while the spatial accuracy seems to be far more important. Although, 
typically, higher order spatial schemes (like fifth order HJ WENO) are coupled with 
higher order schemes in time (like third order TVD RK, [5]), a first order forward Euler 
in time can often be safely employed, thus significantly reducing the computational cost. 
For the problem investigated here, numerical experiments have shown no visible 
sensitivity to reductions in the time-step by a factor of 10 or even 100 in a forward Euler 
method, once the time step is carefully chosen such that convergence occurs. The 
numerical simulations show notable sensitivity to spatial accuracy in the low 
vascularization regime, where the tumor evolution predicted by the model here 
investigated proves bounded but unstable; in the high vascularization regime (stable 
evolution) a first order spatial discretization and a fifth order WENO spatial discretization 
yield results almost indistinguishable at plotting. 
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    The discrete level set Eq.(4.14) is only being solved within the current narrow band 
tube T ; the values of the level set function at the grid points marked “near a tube edge” 
are kept frozen, as well as the grid points outside the current tube. More details on the 
narrow band implementation are given in Section 5. 
    The re-initialization Eq. (3.9)–either with the choice (3.10) or (3.11)–is discretized 
using the same conservative scheme for Hamilton-Jacobi equations as in (4.30) above 
[8]: 
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Whenever re-initialization is required, Eq. (4.18) is iterated to steady-state. If (3.10) is 
used for the smeared “sign” function , then is evaluated only once in (4.18), using the 
initial data ; on the other hand, if (3.11) is being used, then 

 must be updated continually at each iteration in (4.18). Both choices have 
been numerically tested for the current problem; no visible differences have been 
observed. The same comments made in Section 4.3 hold regarding the order of the 
temporal and spatial approximations in (4.18). If forward Euler in time and fifth-order 
discretization in space are used in the level set equation (4.14), then they are used in the 
re-initialization equation (4.18) for consistency. 

S S
)0),(),((0,

, jyixreinitreinit
ji ϕϕ =

)( reinitSS ϕ=

 
Remark: 

Particularly for the unstable regime of the tumor growth, frequent use of re-
initialization is avoided unless required. Re-initialization  is used here jointly with 
the reconstruction of the “narrow band” (tube), and then, according to  Step 1 in 
the algorithm, the level set function is reset to a signed distance function in the 
entire computational domain in order to correctly mark the grid points inside the 
new tube. Otherwise, if intermediate re-initializations are desired without re-
building the tube, the discrete re-initialization equation (4.34) can be iterated to 
steady-state inside the current tube T only. 

 
5. Numerical results 
 
   In order to test the solution procedures, a series of two-dimensional numerical 
simulations of tumor growth governed by the model introduced in Section 2 are 
presented, along with additional details of the solution implementation. The results are 
compared quantitatively to the linear theory and qualitatively to the boundary integral 
solutions presented in [1]. For the model governed by equations (2.19), (2.23) and (2.24) 
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(namely, decoupled linear elliptic equations with constant coefficients), the boundary 
integral method is an optimal choice from the point-of-view of accuracy and efficiency. 
The objective of the present work is to provide a general computational framework that 
may be used successfully for more complex tumor growth models (e.g., coupled 
parabolic equations, variable coefficients, different governing equations inside and 
outside the tumor domain, etc. [21]), for which a boundary integral method is no longer 
applicable. Additionally, the proposed methodology can be extended to three-
dimensional simulations in arbitrary geometries. 
    For the level set computations, the first issue to be addressed is the choice of the 
“narrow band” (tube) width. While in [2], a width hwidthh 96 ≤≤  on each side of the 
interface has been suggested as generally optimal, the appropriate width for a specific 
problem must be chosen depending on the quantities involved in the interface evolution 
in time (e.g., curvature), the order of the spatial discretization in the level set equation 
(4.14) and the number of re-initializations allowed. Since in the narrow band approach 
the level set function is updated only within the tube, its values at grid points near the 
edges of the tube boundary are frozen (as well as values outside the tube that are not used 
until the tube is rebuilt). The interface (identified as the zero level set) cannot be allowed 
to move all the way to the tube boundary, since the artificial boundary conditions there 
would adversely affect the motion of the zero level set as well as its geometric properties 
(i.e., normal, curvature). In [3], it has been suggested that for flows under curvature, a 
better approach is to estimate the derivatives in (4.14) at points near the edge of the tube 
boundary by linear extrapolation from within the tube, instead of freezing the values of 
the level set function. However, rather than employing this more sophisticated approach  
for the current implementation, the interface is always maintained at a safe distance from 
the boundary of the tube, even if this translates into a wider tube and more frequent 
reconstruction of the tube. If a fifth-order HJ WENO scheme is used to approximate the 
backward/forward difference operators in (4.15) and (4.16) (requiring 3 neighboring grid 
points in each up-wind direction), the width of the tube is taken to be 15h on each side of 
the interface. The interface is only allowed within at most 9 grid cells from the tube 
boundary (i.e., it is allowed to move at most 6 grid cells within the tube) before the tube 
is rebuilt. If a regular first-order scheme is used in (4.15) and (4.16), then the width of the 
tube is taken to be 9h on each side of the interface and the interface is as before, allowed 
to move at most 6 grid cells within the tube before the tube rebuilding procedure is 
triggered.  
    All the results included here were obtained using the explicit Euler method in time for 
the level set equation (4.14). Even though the method is first-order in time and fifth-order 
in space, the truncation error in time and space remain reasonably balanced because of 
the stability restrictions on the size of the time step. In all the results included here, the 
mesh size will be indicated rather than the number of points on the fixed Cartesian grid. 
This is because for the same tube width, a slightly different size for the computational 
domain might be used for different mesh sizes (i.e., a slightly wider tube for larger mesh 
sizes, in order for the tube to remain safely embedded in the larger fixed Cartesian grid 
by the end of the simulation). Additionally, in the figures some of the computational 
domains have been rescaled for plotting purposes. 
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    First, in Fig. 2, the validity of the “narrow band” approach is tested by direct 
comparison with the corresponding results obtained using a full matrix approach. The 
initial tumor boundary is a perturbed circle defined by the parametric equation: 
 
       ]2,0[)),sin(),))(cos(2cos(5.01.2())(),(( παααααα ∈+=yx        (5.1) 
 
The values of the dimensionless model parameters are 5.0,20 == AG .  According to the 
model assumptions in Section 2, the tumor is in the low vascularization regime. The mesh 
size and time step used are listed in the figure caption. Both approaches yield the same 
tumor evolution to within the truncation error. For both the “narrow band” and the full 
matrix approach, the fifth-order HJ WENO spatial discretization was used in the level set 
equation; moreover, the re-initialization procedure (only used in the “narrow band” 
approach) employs a similar fifth-order HJ WENO spatial discretization for Eq. (4.18). 
As described in Section 4, for the “narrow band” approach, the re-initialization procedure 
is always used jointly with the tube reconstruction. 
    In developing the solution procedure, it was important to understand the impact of the 
spatial scheme used for the level set solution. In Fig. 3, for the same initial tumor 
boundary, model parameters and mesh size as the previous case, the tumor boundary 
evolution at a specific time is shown for two solution methods. The initial tumor shape is 
shown as the lighter solid oval curve. At a scaled time of 2.5, the dashed curve 
corresponds to the tumor boundary computed using a first-order scheme for the level set 
equation (4.14) and the solid curve corresponds to the fifth-order HJ WENO. The narrow 
band approach was used in both cases. The first-order scheme was not able to properly 
capture the boundary evolution in the region where the curvature changed most rapidly. 
Unless otherwise specified the remaining results presented were calculated using the 
fifth-order HJ WENO scheme both for the level set and for the reinitialization equations. 
    A simple quantitative check on the solution procedure is provided by a comparison 
with the growth of angular perturbations to a radially symmetric tumor boundary. The 
linear stability theory presented in [1] was employed in Mathematica to compute the 
predicted tumor boundary shape at early times. For the same initial perturbation shape 
and parameters used in Figs. 2 and 3, Fig. 4 shows the tumor boundary predicted by the 
linear analysis and the nonlinear solution calculated using the level set approach at three 
time levels. At each time level, the initial perturbed circular shape is shown as well. At 
the two earlier times shown, the nonlinear solution tracks the evolution predicted by the 
linear theory very well. Only at the latest time level shown, where the boundary has 
grown beyond the validity of the linear theory, does the nonlinear tumor boundary shape 
differ significantly from the predicted linear shape.  
     Fig. 5 shows in detail the time evolution of the tumor from the level set solution, again 
for the same parameters, but calculated using a finer mesh: 09.0=h . The same 
qualitative behavior in the tumor boundary evolution is obtained as displayed by the 
boundary integral solution presented in figure 2 of [1] for the model parameters G = 20, 
A = 0.5. Here, a larger symmetric initial perturbation was used because, for the particular 
case of a very slightly perturbed circle with this choice of the model parameters, 
replicating the high resolution provided by the boundary integral technique proved 
difficult due to mesh size limitations. As shown in Fig. 4, at early times the tumor grows 
in a bounded but unstable fashion with the linear and nonlinear solution overlapping but 
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gradually start to deviate. The linear solution tends to pinch-off, which eventually yields 
two separate lobes, while the nonlinear evolution of the tumor boundary in time tends to 
be stabilized by the surface tension (here modeling cell-cell adhesive forces) that oppose 
the development of large negative curvatures leading to pinch-off. Instead, the tumor 
continues to grow into a "dogbone" shape with elongated lobes that eventually connect. 
From the standpoint of model predictions, this type of behavior would lead to engulfing 
healthy tissue.  
    In Fig. 6, the time evolution of an asymmetric, multimodal initial tumor is investigated 
for . Again, the results were obtained by using a “narrow band” approach, 
with a fifth-order HJ WENO spatial scheme both in the level set equation (4.14) and the 
re-initialization equation (4.18); the mesh size is 

5.0,20 == AG

09.0=h .  The initial asymmetric tumor 
boundary is given by:  
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The results show good qualitative agreement with the corresponding results obtained in 
[1] using a boundary integral method and the identical asymmetric, initial perturbation. 
Similarly to the results in [1], Fig. 6 shows modes 2 to 6 becoming unstable as the tumor 
continues to grow in time, exhibiting the same tendency to form lobes – asymmetric in 
this case – that will again tend to connect and encapsulate healthy tissue. 
    Up to this point, all of the cases used to test the level set solution procedure have been 
in the low vascularization regime of the model. Figure 7 shows two sets of results 
obtained in the high vascularization regime, for a choice of the model parameters 

, and the initial tumor boundary defined by 2.0,5 =−= AG
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A “narrow band” approach was used with the two different spatial schemes again 
evaluated for obtaining the tumor boundary evolution. The results shown in the top part 
of the figure were obtained using a first-order scheme for both the level set equation and 
for the re-initialization equation; on the bottom part of the figure a fifth-order HJ WENO 
scheme was used for both equations. In both cases, the mesh size is . In this 
case, there are no notable differences between the two sets of results (unlike the unstable 
growth case in the low vascularization regime depicted in Figs. 2 and 3). It is important to 
note that similar comparisons using courser meshes (

05.0=h

1.0=h and 2.0=h ) for this case 
showed no notable differences between results obtained via the two different spatial 
discretization methods. Also, comparisons against the full matrix approach at a mesh size 
of were in agreement with the “narrow band” approach. The choice of the model 
parameters, , here corresponds to a scenario where cell apoptosis rate is 
higher than cell mitosis rate – which in this model leads to tumor shrinkage and eventual 
disappearance. As it can be seen in Fig. 7, the shrinkage occurs in a stable fashion (in this 
regime, the initially perturbed tumor boundary quickly evolves into a shrinking circle). 

1.0=h
2.0,5 =−= AG

   Finally, the results presented in Fig. 8 show the tumor evolution in time in the high 
vascularization regime as well, corresponding to a scenario where the mitosis rate is 
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higher than apoptosis rate. The simulation starts from the same initial tumor shape used 
for the previous case, Eq. (5.3). In Fig. 8, the model parameters, 8.0,5 =−= AG , were 
used. In this case stable, unbounded growth occurs (in this regime, the initially perturbed 
tumor very soon evolves into an expanding circle). The results shown in both Figs. 7 and 
8 show very good agreement with results presented in [1] obtained via the boundary 
integral method. 
   Additional quantitative information regarding the solution procedure was obtained from 
a systematic evaluation of the order of spatial accuracy of the overall solution procedure. 
A mesh refinement analysis was conducted for two cases: one–in the low vascularization 
regime with model parameters 5.0,20 == AG and initial tumor boundary given by Eq. 
(5.2); two–in the high vascularization regime with 2.0,5 =−= AG and the initial tumor 
boundary given by Eq. (5.3). In both cases, the results were obtained using the narrow 
band approach with the fifth-order HJ WENO in the level set equation and in the re-
initialization equation. 
   As described in Section 4.2, in computing the normal velocity of the tumor interface via 
Eq. (4.8), a second-order backward difference approximation (4.9) in the normal 
direction is employed. In theory, since the field variables P and Γ  are determined with 
second-order accuracy, then the numerical value of the normal velocity of the interface 
can only be first-order accurate in this approach – regardless of the order of the backward 
differencing scheme used to approximate the normal derivatives in (4.23). In practice, 
numerical tests have shown that using first-order backward differencing to approximate 
the terms ),( int

)( tx erface
nP r
r

•∇  and ),( int
)( tx erface

n r
r

•Γ∇  in (4.8) leads to considerably slower 

motion than when a second-order approximation is used. Further comparison of the 
tumor evolution in time using a second-order approximation and a third-order 
approximation showed no visible difference. Therefore, the second-order approximation 
(4.9) was chosen for the implementation here. A second related aspect must be noted here 
as well: according to the observations in the precedent paragraph, the numerical treatment 
of the term ),( int

)( tx erface
n r
r

•Γ∇  is first-order accurate; thus, the magnitude of the model 

parameter G  that multiplies this term in (4.8) is expected to have an important impact on 
the tumor evolution in time. This will be clearly shown in the mesh refinement analysis 
below. 
     Fig. 9 shows the evolution of the tumor boundary at three different moments of time 
computed using three different mesh sizes: 36.0=h , 18.0=h  and  for 

and the initial tumor boundary given by Eq. (5.2). Figure 10 shows the 
evolution of the tumor at three different moments of time computed using three different 
mesh sizes: ,  and 

09.0=h
5.0,20 == AG

4.0=h 2.0=h 1.0=h  for 2.0,5 =−= AG  and the initial tumor 
boundary given by Eq. (5.3). By comparison, it is very clear that for the case with the 
larger magnitude of G , the tumor evolution in time is much more sensitive to the mesh 
size than the smaller G case. The mesh sizes were chosen to allow for two levels of 
refinement, starting with a relatively coarse mesh. Since, ideally, the methodology 
developed here is designed for implementation on moderately sized, standalone 
computing platforms, coarser meshes were used to evaluate the solution behavior and 
determine whether the results show the correct qualitative trends. 
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    The final issue addressed is the overall accuracy of the method here employed. Once 
the boundary starts to move, it becomes difficult to perform a quantitative convergence 
analysis on the field variables and in the vicinity of the moving 
boundary at a particular moment of time 

nji
n
jiP Ω∈,, }{

nji
n

ji Ω∈Γ ,, }{

ntt = , since grid points might lie on different 
sides of the boundary for different mesh sizes. Instead, the accuracy of the tumor 
boundary location in time can be quantitatively estimated. The level set method 
reconstructs the interface at every moment of time as a piecewise linear manifold; 
suppose that the Cartesian mesh size is doubled twice and denote by 

1,1
1,

,int }{ Nk
n

kerfacex
=

r , 

2,1
2,

,int }{ Nk
n

kerfacex
=

r  and 
4,1

4,
,int }{ Nk

n
kerfacex

=

r  the collection of interface points 

),( ,int,int,int kerfacekerface
n

kerface yxx =
r  at time ntt = corresponding to the coarsest mesh, the 

intermediate mesh and the finest mesh, respectively (it is assumed that the interface here 
is a closed curve). Thus, the interface is represented as a closed polygonal line with , 

 and  line segments for the coarsest, intermediate and finest representation, 
respectively. Let the lengths of these polygonal lines be denoted by ,  and  
respectively. The idea is to re-divide each polygonal line into the same given number 

1N

2N 4N

1L 2L 4L
N  

of equally spaced points (typically 4NN = ). Start from the same position for all three 
polygonal lines – say the point on each polygonal line that lies on the x-axis closest to 0 – 

and move clockwise along each polygonal line with a step 
N
Ls 1

1 = , 
N
Ls 2

2 =  and 

N
Ls 4

4 = ; mark the newly determined points on each polygonal line ,  and , 

yielding 

1L 2L 4L

Nk
n

kerfaceX ,1
1,

,int }{
=

r
, Nk

n
kerfaceX ,1

2,
,int }{

=

r
 and Nk

n
kerfaceX ,1

4,
,int }{

=

r
.  

 
        Since no analytic solution is available, the errors are computed with respect to the 
numerical solution corresponding to the finest mesh Nk

n
kerfaceX ,1

4,
,int }{

=

r
; following [9],[11], 

the error at time  is defined as the largest Euclidean distance of the corresponding 
points of the two computed interfaces: 

ntt =

 
4,

,int
1,

,int,11_4 max n
kerface

n
kerfaceNk

n XXe
rr

−=
=

          (5.4) 

4,
,int

2,
,int,12_4 max n

kerface
n

kerfaceNk

n XXe
rr

−=
=

          (5.5) 

 
A ratio  between 4 and 5 typically indicates second-order spatial accuracy, 

while a ratio between 2 and 3 typically indicates first-order spatial accuracy [9, 11]. 

nn ee 2_41_4 /

The quantitative errors resulting from the mesh refinement analysis in Fig. 9 and Fig. 10 
are recorded in Table 1 and Table 2, respectively. According to these values, the tumor 
boundary location using the fixed Cartesian mesh, ”narrow band” level set approach 
developed here is indeed found with first-order spatial accuracy along its evolution in 
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time. Moreover, the absolute errors are confirmed much larger for the case  than 
for the case with . 

20=G
5−=G

 
6. Conclusions  
 
    A well-established, continuum-based tumor growth model was used here for testing the 
implementation of the level set approach for simulating tumor evolution. The model was 
chosen because of the availability of published results for comparison. A rather detailed 
description of the level set implementation is provided for the purpose of enabling the use 
of the methodology for a variety of tumor growth models. In the present model, there are 
no anisotropies included and the interaction of the tumor with its surroundings is 
incorporated only in simplistic manner.  
   As is well-established [17], tumor vascularization occurs through tumor induced 
angiogenesis–a process during which the tumor living cells release a chemical TAF 
(tumor angiogenic factor). The TAF diffuses into the healthy surrounding tissue and 
stimulates the capillary network existent nearby outside the tumor–thus leading to 
formation of new blood vessels through accumulation of newly born endothelial cells; the 
new capillaries move towards the source of angiogenic factor leading to tumor 
vascularization. These crucial mechanisms associated with the angiogenesis phenomena 
are not accounted for in this simplified model. 
    One of the advantages of the computational framework described here and illustrated 
in the context of a simplified tumor growth model is its potential applicability to a host of 
tumor growth models [18, 19]; recently it has been used successfully to generate 
numerical simulations for a complex model derived from the theory of mixtures and 
centered on the angiogenesis phenomena [21].  
   Another advantage comes from the fact that the same exact computational framework is 
readily adaptable to three dimensional calculations from an algorithmic point of view. All 
the numerical schemes involved extend to the three dimensional case in a straightforward 
manner−often translating to simply adding one more dimension to the arrays involved. 
Moreover, the level set method in the narrow band implementation has the ability of 
naturally capturing potential large topological changes in the tumor boundary evolution 
in time at reduced computational expense, while automatically providing information 
about the local geometric properties. As already mentioned, this proves to be very 
important in complex tumor growth models where different biological phenomena may 
occur inside the tumor and outside in the healthy surrounding tissue. 
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Appendix A   
 
Approximation to curvature 
 
In terms of the level set function, the curvature (of the zero level set, as well as of any 
other level set) is given by   
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For the numerical solution procedure, at a grid point , the corresponding 
approximation to the curvature 

),( ji

ji ,κ  is obtained by using central differencing in all of the 
above terms. 
If the level set function ϕ  remains smooth enough in a neighborhood of the interface, 
then the curvature at a point on the interface is obtained by bilinear interpolation from the 
values of the curvature computed at the 4 neighboring nodes on the fixed Cartesian grid 
(i.e., the 4 corners of the fixed grid cell where the interface point lies). 
 
Approximation to the normal 
 
The local unit outward normal (to the zero level set (i.e., the interface), as well as to all 
the other level sets) is given by the formula: 
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Here the construction of the approximate normal described in [2] is followed, which takes 
into account the possibility for the normal to undergo a jump at corners. First, at a grid 
point , let: ),( ji
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Then the approximate local unit outward normal at the grid point  is computed as: ),( ji
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Again, as in the case of the curvature, if the level set function ϕ  remains smooth enough 
in a neighborhood of the interface, then the local unit outward normal at a point on the 
interface is obtained by bilinear interpolation from the values of the local unit outward 
normal computed at the four neighboring nodes on the fixed Cartesian grid. 
 

 
 

 
 
Appendix B       
 
At grid points adjacent to the interface on each side marked as “irregular” in Fig.1, the 
extension velocity field is constructed by hand. There are two ways of doing this: 
 

I. Let ))(),((: jyixx =
r  denote the position of the irregular grid point  (on either 

side of the interface); find its projection (i.e. the closest point) on the interface 
),( ji

erfacexint
r  by moving along the unit steepest direction: 

),(
),(

int tx
txxx erface r

r
rr

ϕ
ϕα

∇
∇

+= ,  

where α is a real number (positive or negative) to be determined; clearly, h≤α . 
 Since the level set function on the interface is 0, then: 
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 and a Taylor series expansion yields: 
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)),(( txHe rϕ  corresponds to the Hessian matrix of the level set function ),( txrϕ .  If 
in the above expansion only the first two terms are kept, then a second order 

accurate location of the projection on the interface is yielded by 
),(

),(
tx

tx
r

r

ϕ
ϕα

∇
−= . 

If a highly accurate location of the projection is desired, then the first three terms 
in the above Taylor expansion can be kept and the resulting quadratic algebraic 
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equation is solved for the unknown α ; as long as ),( txrϕ∇  does not depart 

substantially from 1, the term 
),(
),(

),(
),()),((

tx
tx

tx
txtxHe r

r

r

r
r

ϕ
ϕ

ϕ
ϕϕ

∇
∇

•
∇
∇ remains close to 

0, and the discriminant of the quadratic equation for α is safely positive; after 
solving the equation, the root with the smallest absolute value is picked. 
The extension velocity field at the irregular grid point ))(),((: jyixx =

r  is obtained 
by copying the normal velocity of erfacexint

r which is prescribed by Eq. (2.24): 
),(),(:),()( intint,, txVtxFtxFtFF erfaceerfacejiji

rrr
====  

The advantage of this projection method is its computational efficiency; the 
potential disadvantage is that if higher order derivatives of the level set function 

),( txrϕ  are involved, this might require usage of the re-initialization procedure 
more often. 
 

II. A second approach is inspired by the initialization stage of the “Fast Marching 
Method” described in [2]. While somewhat harder to implement, it has the 
advantage that it is a purely geometric construction, which does not involve the 
use of level set function derivatives. Instead, the intersection of the interface with 
the fixed Cartesian grid lines is required; this is easily obtained from the values of 
the level set function ϕ  by linear interpolation. The approximate Euclidean 
distance from the position of an irregular point  to the front is found purely 
geometrically, by repeated use of the Pythagorean theorem, depending on the 
geometrical neighboring configuration; up to a rotation, there are 5 geometrically 
distinct cases that need to be considered for the neighborhood of an irregular grid 
point  [2]. Thus, the approximate closest point (not found here explicitly) on the 
interface in this case would lie on a segment of line that is part of the interface 
reconstructed as a piecewise linear manifold; its normal velocity is obtained by 
linear interpolation from the values of the normal velocities at the 2 segment ends. 
As in the previous case, the extension velocity field at the irregular grid point 

),( ji

))(),((: jyixx =
r  is obtained by copying the normal velocity of the closest point 
on the interface. 
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 Fig.  2.  Nonlinear tumor evolution in time for unstable growth in the low vascularization regime 
(G=20, A=0.5): top -  full matrix approach WENO used for level set equation;  bottom –  narrow 
band approach  WENO used for level set equation and re-initialization.   Initial tumor boundary 
given by Eq. (5.1).  Mesh size 18.0=h  and time step 001.0=∆t for both cases. 
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 Fig. 3. Comparison of nonlinear tumor evolution in time obtained employing a first-order level 

set scheme vs. a WENO scheme; the solution obtained via the first-order scheme exhibits 
numerical dissipation. Initial tumor boundary given by Eq. (5.1), low vascularization regime 
(G=20, A=0.5).  Mesh size  and time step 18.0=h 001.0=∆t . 
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 Fig.  4. Comparison between the nonlinear solution obtained via the narrow band level set  

approach and the solution obtained using the linear analysis developed in [1] for the low 
vascularization regime (G=20, A=0.5).  Initial tumor boundary given by Eq. (5.1).  Mesh size 

 and  time step ∆ . 18.0=h 001.0=t

 
 
 
 
 

 31



-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

time=1.0 time=0 

time=1.5 time=2.2 

 
  

Fig. 5.  Nonlinear tumor evolution in time via the narrow band level set approach (WENO) for 
the low vascularization regime (G=20, A=0.5).   Initial tumor boundary given by Eq. (5.1).  
Mesh size h  and time step 09.0= 00025.0=∆t . 
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Fig. 6. Nonlinear tumor evolution in time for the low vascularization regime (G=20, A=0.5) via 
the narrow band level set approach (WENO scheme).  Initial tumor boundary given by Eq. (5.3).  
Mesh size h and time step 09.0= 00025.0=∆t . 
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 Fig. 7. Nonlinear tumor evolution in time using the narrow band level set approach for parameters in the high 
vascularization regime (G=-5, A=0.2). Initial tumor boundary shrinks in time. Top: first-order scheme for both 
the level set and re-initialization; Bottom: WENO scheme used for both.  Initial tumor boundary given by Eq. 
(5.4).  Mesh size  and time step 05.0=h 00005.0=∆t . 
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 Fig. 8. Nonlinear tumor evolution for unbounded growth obtained via the level set approach in 
the high vascularization regime (G=-5, A=0.8).   Initial tumor boundary given by Eq. (5.4).  
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Fig. 9.  Convergence study in the low vascularization regime (G=20, A=0.5).  Initial tumor boundary 
given by Eq. (5.3). 
 
 
 

 
Table 1. 

time ne 1_4 (5.5) ne 2_4 (5.6) 
n

n

e
e

2_4

1_4  

t=0.75 0.8725 0.1674 5.2 
t=1.5 1.6117 0.5659 2.8747 
t=2.0 2.6363 1.2077 2.1827 

 

 36



-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
h=0.4
h=0.2
h=0.1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

time=0.4 time=0.8 

 

Fig. 10.  Convergence study in the high vascularization regime (G=-5, A=0.2). Initial tumor boundary 
given by Eq. (5.4). 

 
 
 
 
Table 2. 

time ne 1_4 (5.5) ne 2_4 (5.6) 
n

n

e
e

2_4

1_4  

t=0.4 0.1165 0.0389 2.9961 
t=0.8 0.1357 0.0388 3.4927 
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