Non-optimal levels of $\bmod \ell$ reducible Galois representations Or

Modularity of residually reducible representations

Kenneth A. Ribet

UC Berkeley

CRM
July 9, 2010

This talk concerns weight-two eigenforms with square free level and trivial character.

Surely the single best-known such form is the very first one: the level-11 form associated to the elliptic curve
$y^{2}+y=x^{3}-x^{2}-10 x-20$ over \mathbf{Q}.
Fix a prime number ℓ and an embedding $\overline{\mathbf{Q}} \hookrightarrow \overline{\mathbf{Q}}_{\ell}$; then the coefficients of our forms are ℓ-adic numbers. Each form f then gives rise to a mod ℓ Galois representation

$$
\rho=\rho_{f}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow \mathbf{G L}\left(2, \overline{\mathbf{F}}_{\ell}\right) .
$$

The representation is determined uniquely up to isomorphism once we insist that it be semisimple. If it is reducible, it must be $1 \oplus \chi_{\ell}$ (up to isomorphism).

If this were a talk on Serre's conjectures, we would focus on the irreducible case. We would fix a target representation ρ and explore the (non-empty!) set of $f s$ that give rise to it.

This talk is about the opposite case: our target representation is $1 \oplus \chi_{\ell}$ instead.

This study was sparked by a question of Dieulefait-Jimenez, who sought to study situations where the field of coefficients $E_{f}=\mathbf{Q}\left(\ldots, a_{n}(f), \ldots\right)$ has large degree over \mathbf{Q}.

Assume that N is even and that $\ell>2$. Then if $\rho_{f} \approx 1 \oplus \chi_{\ell}$, the degree of E_{f} is bounded from below by a constant times $\log \ell$.

Indeed, we have $a_{2}(f) \equiv 3 \bmod \lambda$, where λ is the prime of E_{f} induced by $E_{f} \hookrightarrow \overline{\mathbf{Q}}_{\ell}$. Because $a_{2}(f)-3$ is a nonzero algebraic integer whose norm is divisible by ℓ, its norm is at least ℓ. At the same time, the norm is bounded from above by $(2 \sqrt{2}+3)^{d}$, where $d=\left[E_{f}: \mathbf{Q}\right]$. This phenomenon was first pointed out by Barry Mazur in his "Eisenstein ideal" article.

That article studies reducible representations in the case where N is a prime. As Mazur shows, there is an f giving $1 \oplus \chi_{\ell}$ if and only if ℓ divides the numerator of $(N-1) / 12$.
We will take $\ell>3$ (and are especially interested in the case $\ell=5$ for computations). Then a prime number N yields our target representation if and only if $N \equiv 1 \bmod \ell$.
In one direction: If $N \equiv 1 \bmod \ell$, then $J_{0}(N)$ has a constant subgroup $\mathbf{Z} / \ell \mathbf{Z}$ (contained in the cuspidal subgroup of $J_{0}(N)$). The Hecke ring $\mathbf{T} \subseteq$ End $J_{0}(N)$ acts on the $\mathbf{Z} / \ell \mathbf{Z}$ in an Eisenstein fashion (T_{r} acts as $r+1$ if r is a generic prime number), and one builds f from there.

In the other direction, if $f \mapsto 1 \oplus \chi_{\ell}$, then f mod ℓ "looks Eisenstein" and can be related to an Eisenstein series: if $a_{N}(f)=-1$, this is a non-existent form (so we rule out this case), and if $a_{N}(f)=+1$, this is the standard $\Gamma_{0}(N)$ Eisenstein series whose constant coefficient is $\frac{N-1}{12}$. This coefficient must match up $\bmod \ell$ with f 's, which is 0 , so we get $N \equiv 1 \bmod \ell$.

More generally, we might have $N=p_{1} \cdots p_{t}$ (product of distinct primes) and $a_{p_{i}}(f)=\epsilon_{i}= \pm 1$ for $i=1, \ldots, t$. If $f \mapsto 1 \oplus \chi_{\ell}$, then the ϵ_{i} can't all be -1 , and Mazur's argument proves
$\prod_{i}\left(p_{i}-\epsilon_{i}\right) \equiv 0 \bmod \ell$.

Notation

It seems beneficial to shuffle the p_{i} so the signs ϵ_{i} start with a string of 1 's and end with a (possibly empty) string of -1 's. Let s be the number of 1 's; we have $1 \leq s \leq t$. The number of -1 's is $t-s$. We have

$$
\epsilon_{1}=\cdots=\epsilon_{s}=+1, \quad \epsilon_{s+1}=\cdots=\epsilon_{t}=-1
$$

Let $P=\prod_{i}\left(p_{i}-\epsilon_{i}\right) \equiv 0$. Then

$$
P=\left(p_{1}-1\right) \cdots\left(p_{s}-1\right) \cdot\left(p_{s+1}+1\right) \cdots\left(p_{t}+1\right)
$$

The question

Fix t (the number of prime factors) and $s \in\{1, \ldots, t\}$ (the number of plus signs).

We seek to characterize the t-tuples $\left(p_{1}, \ldots, p_{s} ; p_{s+1}, \ldots, p_{t}\right)$ of distinct primes so that there is a newform f of level $N=p_{1} \cdots p_{t}$ with weight two and trivial character such that

- $f \mid T_{p_{i}}=f$ for $i=1, \ldots, s$
- $f \mid T_{p_{i}}=-f$ for $i=s+1, \ldots, t$
- The $\bmod \ell$ Galois representation associated to f is $1 \oplus \chi_{\ell}$.

We could call these t-tuples "admissible."

We are looking for the non-optimal levels of the Galois representation $1 \oplus \chi_{\ell}$.
The optimal level for this representation is arguably 1 , but since there are no weight- 2 cusp forms of level 1 , all of our levels are non-optimal.

An immediate observation: if f gives $1 \oplus \chi_{\ell}$ and $\epsilon_{i}=-1$, then $p_{i} \equiv-1 \bmod \ell$. We see this by looking at ρ_{f} locally at p_{i}.

Hence in the case where not all signs are +1 , the congruence $\prod_{i}\left(p_{i}-\epsilon_{i}\right) \equiv 1 \bmod \ell$ that we had earlier can be strengthened considerably: each of the last several factors of the product is divisible by ℓ.

We will henceforth assume that all p_{i} with $i>s$ are $-1 \bmod \ell$. I like to call these primes q_{i} as well as p_{i} in order to emphasize that they play a different role from p_{1}, \ldots, p_{s}.
When all signs are +1 , the earlier congruence $\prod_{i}\left(p_{i}-\epsilon_{i}\right) \equiv 0$ $\bmod \ell$ just means that ℓ divides $\phi(N)$ (Euler phi).

Overview of the situation

(1) In the case that $s=t$ (no minus signs!) and s is odd, (p_{1}, \ldots, p_{s}) is admissible if and only if ℓ divides $\phi\left(p_{1} \cdots p_{t}\right)$.
(2) If $\left(p_{1}, \ldots, p_{t}\right)$ is admissible and q is a $t+1$ st prime (not one of the p_{i}), then $\left(p_{1}, \ldots, p_{t}, q\right)$ is admissible (with s unchanged but t augmented by 1). This has been proved (so far) only when t is odd.
(3) In the case $t=s+1$ and s odd, $\left(p_{1}, \ldots, p_{s} ; q\right)$ is admissible. Here there is one minus sign and an even number of primes in total. There is no hypothesis that $\left(p_{1}, \ldots, p_{s}\right)$ be admissible.
(3) If $s=t=2$, I will describe what happens; the description is a bit complicated. (Here there are two plus signs and no minus signs.)
(6) If $s=2$ and $t=1$, the numerical results are not conclusive.

Take $\ell=5$ and $p_{1}=11$ and consider only situations with all signs +1 . As mentioned before, if $\left(p_{1}, \ldots, p_{s}\right)$ is admissible, then ℓ divides $\phi\left(p_{1} \cdots p_{s}\right)$. The converse is true when s is odd but not when s is even.

For a numerical example, take $\ell=5$ and $p_{1}=11$. Then $(11,7,13)$ is admissible but neither $(11,7)$ nor $(11,13)$ is admissible. Starting at level 11, you can add 5 and 7 to the level simultaneously but you can neither to the level alone.

Now here's the promised complicated description of what happens when $s=t=2$:
In order that (p_{1}, p_{2}) be admissible, it is necessary that ℓ divide $\phi\left(p_{1} p_{2}\right)=\left(p_{1}-1\right)\left(p_{2}-1\right)$. Assume that this necessary condition is satisfied and that specifically $p_{1} \equiv 1 \bmod \ell$.
Then (p_{1}, p_{2}) is admissible if and only if p_{2} is a bad prime for $J_{0}\left(p_{1}\right)$ and ℓ in the sense of Mazur's Eisenstein ideal paper. This means that $p_{2}+1-T_{p_{2}}$ is not a generator of the Eisenstein ideal for $J_{0}\left(p_{1}\right)$ locally at the Eisenstein prime of residue characteristic ℓ. Equivalently (Mazur), p_{2} needs to satisfy at least one of the following two conditions:

- $p_{2} \equiv 1 \bmod \ell$,
- p_{2} is an ℓ th power in $\left(\mathbf{Z} / p_{1} \mathbf{Z}\right)^{*}$.

An empirical observation

Suppose that $\left(p_{1}, \ldots, p_{t}\right)$ is admissible, and let $N=p_{1} \cdots p_{t}$. Inside $J=J_{0}(N)$, consider the cuspidal subgroup C of J along with the abelian subvariety $J_{\text {new }}$ of J. Computations in sage suggest that $C \cap J_{\text {new }}$ has order divisible by ℓ. Presumably, this would remain true if we replaced C by the appropriate component of C relative to the action of the Atkin-Lehner operators $w_{p_{i}}$.
For example, in the case $N=1001=11 \cdot 7 \cdot 13$, the command J.new_subvariety().rational_cusp_subgroup () yields:
Finite subgroup with invariants [2, 2, 60]
over $Q Q$ of Abelian subvariety of dimension 59 of JO(1001).

Methods of proof

Consider for instance the statement that $\left(p_{1}, \ldots, p_{s}\right)$ is admissible if s is odd and ℓ divides one of the $p_{i}-1$. Losing no generality, we assume that ℓ divides $p_{1}-1$. Put $p=p_{1}$ and $D=p_{2} \cdots p_{s}$.
Let $J=J_{0}^{D}(p)$ and consider the component group $\Phi_{p}(J)$. This group is understood from the work of Deligne-Rapoport and Buzzard; it is Eisenstein and aside from some stuff killed by 6, it is cyclic of order $p-1$.

One can check that each of the Hecke operators $T_{p_{i}}$ operates as +1 on this cyclic subgroup.
This subgroup cuts out an Eisenstein maximal ideal with residue field \mathbf{F}_{ℓ} in the Hecke algebra associated with the definite quaternion algebra of discriminant $D p$. We use the Jacquet-Langlands correspondence to move over to newforms on GL(2).

More details:
The component group occurs as a quotient $\operatorname{Hom}(X, \mathbf{Z}) / X$, where X is the group of degree-0 elements in the free abelian group on the set S of isomorphism classes of left ideals for a fixed maximal order in a quaternion algebra of discriminant $D p$. The cyclic group of order $p-1$ is generated by $\frac{6}{e(s)} \alpha_{s}$, where $s \in S$ is arbitrary, α_{s} is the linear form that picks out the coefficient of s in a sum, and $e(s)$ is one-half the order of the group of units in the right order attached to s.

As you can readily see, this argument makes no real use of the Jacobian J; it is purely combinatorial and can be treated in the context of group cohomology.

Basically, this proof that tuples are admissible revisits level-raising techniques, employing quaternion algebras in order not to lose primes that have already been added. These techniques were used definitively by Diamond-Taylor for irreducible residual representations. In the Eisenstein case, complications occur because the usual condition " $T_{q} \equiv \pm(1+q)$ " for raising level is not sufficient by itself.
For example, imagine that we work with the mod 5 representation attached to $J_{0}(11)$ and wish to raise levels from 11 to 119 . We can't always do this even though we have $T_{q} \equiv 1+q \bmod 5$ for every q. We need a stronger congruence in the case where the sign of the new T_{q} (known to most as U_{q}) will be +1 ; this corresponds to the condition that $1+q-T_{q}$ not be a local generator of (5) $\subseteq \mathbf{Z}$ at the prime (5) of \mathbf{Z}.

