This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully.

1 (4 points). Find the remainder when 2^{33} is divided by 31.

By Fermat's Little Theorem, $2^{31} \equiv 2 \mod 31$. Thus $2^{33} \equiv 8 \mod 31$.

2 (4 points). Use the identity $27^2 - 8 \cdot 91 = 1$ to find an integer x such that $27x = 14 \mod 91$.

The identity shows that $27^2 \equiv 1 \mod 91$. Hence $27^2 \cdot 14 \equiv 14 \mod 91$. We can take x to be $378 = 27 \cdot 14$ or any integer equivalent to $27 \cdot 14 \mod 91$. In fact, you can check that 14 is the smallest positive integer that is congruent mod 91 to 378. This means that we have $27 \cdot 14 \equiv 14 \mod 91$, so that $26 \cdot 14 \equiv 0 \mod 91$. This may seem strange until one notes that $91 = 7 \times 13$. Hence 26×14 is indeed a multiple of 91.

3 (4 points). Find all prime numbers p such that $p^2 + 2$ is prime.

Maybe this is a silly question; I got it out of a book. If you try the first few primes, you see that $2^2 + 2 = 6$ isn't prime, that $3^2 + 2 = 11$ is prime, and that $5^2 + 2 = 27$ isn't prime. Trying a few more, you get the idea that $p^2 + 2$ is divisible by 3 for p > 3. This is clearly a true statement because any p > 3 is $\pm 1 \mod 3$, so that its square is 1 mod 3. Thus $p^2 + 2$ is zero mod 3.

4 (5 points). Suppose that ax + by = 17, where a, b, x and y are integers. Show that the numbers gcd(a, b) and gcd(x, y) are divisors of 17. Decide which, if any, of the following four possibilities can occur:

- (*i*) gcd(a, b) = gcd(x, y) = 1;
- (*ii*) gcd(a, b) = 17 and gcd(x, y) = 1;
- (iii) gcd(a, b) = 1 and gcd(x, y) = 17;
- (*iv*) gcd(a, b) = gcd(x, y) = 17.

If d is a divisor of a and b, then d divides ax and by, so it divides their sum, which is 17. Thus all divisors of a and b are divisors of 17; this applies, in particular to the gcd of a and b. The gcd can only be 1 or 17, then. A similar statement

applies to the pair (x, y). Clearly, if 17 divides all of a, b, x, y, then 17^2 divides ax and by; this is impossible because ax + by = 17 is not divisible by 17^2 . Thus (iv) cannot occur. The other possibilities do, in fact, occur, however: If x = y = 1, a = 16 and b = 1, then we're in situation (i). If x = y = 1, a = 17 and b = 0, we're in situation (ii). Situation (iii) is the same as (ii) with the two pairs (a, b) and (x, y) reversed.

5 (6 points). Suppose that n is composite: an integer greater than 1 that is not prime. Show that (n-1)! and n are not relatively prime. Prove that the congruence $(n-1)! \equiv -1 \mod n$ is false.

If n is composite, it has a divisor d that is bigger than 1 and less than n. The number d is a factor of (n-1)! because it's one of the numbers between 1 and n-1. Thus n and (n-1)! have a non-trivial common factor and therefore they are not relatively prime. The Wilson-type congruence is false because two numbers that are congruent mod n must have the same gcd with n. The number -1 has gcd 1 with n, whereas (n-1)! has a bigger gcd with n. The point of this problem is to show that there's a converse to Wilson's theorem; n is therefore prime if and only if (n-1)! is $-1 \mod n$

6 (6 points). Prove that -1 is not a square modulo the prime p if $p \equiv 3 \mod 4$.

This was covered in class and is explained in our textbook (p. 54).

7 (6 points). Show that $x^8 \equiv 1 \mod 20$ if x is an integer that is prime to 20. Find the integer t such that $t^9 = 760231058654565217 \approx 7.60231 \times 10^{17}$.

Well, I did promise to give you a problem like this! Euler's theorem states that $x^{\varphi(n)} \equiv 1 \mod n$ for all x prime to n. You can check quickly that $\varphi(20) = 8$: if you look at the numbers between 0 and 19 and take away those that are even or are divisible by 5, you have only eight of them that are left (namely: 1, 3, 7, 9, 11, 13, 17 and 19). Thus we do indeed have $x^8 \equiv 1 \mod 20$ for x prime to 20. Now if $t^9 = 760231058654565217$, then clearly t must be odd and prime to 5. Thus $t^8 \equiv 1$ and $t^9 \equiv t \mod 20$. We visibly have $t^9 \equiv 17 \mod 20$, so $t \equiv 17 \mod 20$ as well. Next, note that t is less than $100 = 10^2$, since $t^9 < 10^{18}$. Thus the only possible values of t are 17, 37, 57, 77, and 97. In fact, t = 97. To see this, we can note that $80^9 \approx 1.34218 \times 10^{17}$ is a lot smaller than t^9 ; for this, you have to think about 8^9 , which is $1024 \times 1024 \times 128$. Alternatively, you can rule out 77 by noting that t^9 is not divisible by 3 (sum of digits rule) and rule out 57 by noting that t^9 is not divisible by 3 (sum of digits rule). Once you do this, you can rule out 17 and 37 by checking that 40^9 is a lot less than 10^{17} .

115 midterm - page2