Math 115
 First Midterm Exam

Professor K. A. Ribet

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully.

1 (4 points). Find the remainder when 2^{33} is divided by 31.
By Fermat's Little Theorem, $2^{31} \equiv 2 \bmod 31$. Thus $2^{33} \equiv 8 \bmod 31$.
2 (4 points). Use the identity $27^{2}-8 \cdot 91=1$ to find an integer x such that $27 x=14 \bmod 91$.

The identity shows that $27^{2} \equiv 1 \bmod 91$. Hence $27^{2} \cdot 14 \equiv 14 \bmod 91$. We can take x to be $378=27 \cdot 14$ or any integer equivalent to $27 \cdot 14 \bmod 91$. In fact, you can check that 14 is the smallest positive integer that is congruent mod 91 to 378 . This means that we have $27 \cdot 14 \equiv 14 \bmod 91$, so that $26 \cdot 14 \equiv 0 \bmod 91$. This may seem strange until one notes that $91=7 \times 13$. Hence 26×14 is indeed a multiple of 91 .

3 (4 points). Find all prime numbers p such that $p^{2}+2$ is prime.
Maybe this is a silly question; I got it out of a book. If you try the first few primes, you see that $2^{2}+2=6$ isn't prime, that $3^{2}+2=11$ is prime, and that $5^{2}+2=27$ isn't prime. Trying a few more, you get the idea that $p^{2}+2$ is divisible by 3 for $p>3$. This is clearly a true statement because any $p>3$ is ± 1 $\bmod 3$, so that its square is $1 \bmod 3$. Thus $p^{2}+2$ is zero $\bmod 3$.

4 (5 points). Suppose that $a x+b y=17$, where a, b, x and y are integers. Show that the numbers $\operatorname{gcd}(a, b)$ and $\operatorname{gcd}(x, y)$ are divisors of 17. Decide which, if any, of the following four possibilities can occur:
(i) $\operatorname{gcd}(a, b)=\operatorname{gcd}(x, y)=1$;
(ii) $\operatorname{gcd}(a, b)=17$ and $\operatorname{gcd}(x, y)=1$;
(iii) $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(x, y)=17$;
(iv) $\operatorname{gcd}(a, b)=\operatorname{gcd}(x, y)=17$.

If d is a divisor of a and b, then d divides $a x$ and $b y$, so it divides their sum, which is 17 . Thus all divisors of a and b are divisors of 17 ; this applies, in particular to the gcd of a and b. The gcd can only be 1 or 17 , then. A similar statement
applies to the pair (x, y). Clearly, if 17 divides all of a, b, x, y, then 17^{2} divides $a x$ and by; this is impossible because $a x+b y=17$ is not divisible by 17^{2}. Thus (iv) cannot occur. The other possibilities do, in fact, occur, however: If $x=y=1$, $a=16$ and $b=1$, then we're in situation (i). If $x=y=1, a=17$ and $b=0$, we're in situation (ii). Situation (iii) is the same as (ii) with the two pairs (a, b) and (x, y) reversed.

5 (6 points). Suppose that n is composite: an integer greater than 1 that is not prime. Show that $(n-1)$! and n are not relatively prime. Prove that the congruence $(n-1)!\equiv-1 \bmod n$ is false.

If n is composite, it has a divisor d that is bigger than 1 and less than n. The number d is a factor of $(n-1)$! because it's one of the numbers between 1 and $n-1$. Thus n and ($n-1$)! have a non-trivial common factor and therefore they are not relatively prime. The Wilson-type congruence is false because two numbers that are congruent mod n must have the same gcd with n. The number -1 has gcd 1 with n, whereas $(n-1)$! has a bigger gcd with n. The point of this problem is to show that there's a converse to Wilson's theorem; n is therefore prime if and only if $(n-1)$! is $-1 \bmod n$

6 (6 points). Prove that -1 is not a square modulo the prime p if $p \equiv 3 \bmod 4$.
This was covered in class and is explained in our textbook (p. 54).
7 (6 points). Show that $x^{8} \equiv 1 \bmod 20$ if x is an integer that is prime to 20. Find the integer t such that $t^{9}=760231058654565217 \approx 7.60231 \times 10^{17}$.

Well, I did promise to give you a problem like this! Euler's theorem states that $x^{\varphi(n)} \equiv 1 \bmod n$ for all x prime to n. You can check quickly that $\varphi(20)=8$: if you look at the numbers between 0 and 19 and take away those that are even or are divisible by 5 , you have only eight of them that are left (namely: 1, 3 , $7,9,11,13,17$ and 19). Thus we do indeed have $x^{8} \equiv 1 \bmod 20$ for x prime to 20 . Now if $t^{9}=760231058654565217$, then clearly t must be odd and prime to 5 . Thus $t^{8} \equiv 1$ and $t^{9} \equiv t \bmod 20$. We visibly have $t^{9} \equiv 17 \bmod 20$, so $t \equiv 17$ $\bmod 20$ as well. Next, note that t is less than $100=10^{2}$, since $t^{9}<10^{18}$. Thus the only possible values of t are $17,37,57,77$, and 97 . In fact, $t=97$. To see this, we can note that $80^{9} \approx 1.34218 \times 10^{17}$ is a lot smaller than t^{9}; for this, you have to think about 8^{9}, which is $1024 \times 1024 \times 128$. Alternatively, you can rule out 77 by noting that t^{9} is not divisible by 11 (alternate sum of digits rule) and rule out 57 by noting that t^{9} is not divisible by 3 (sum of digits rule). Once you do this, you can rule out 17 and 37 by checking that 40^{9} is a lot less than 10^{17}.

