Math 115

Fall Semester, 1999

Professor K. A. Ribet

First Midterm Exam

September 23, 1999

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully.

1 (4 points). Find the remainder when 2^{33} is divided by 31.

2 (4 points). Use the identity $27^2 - 8 \cdot 91 = 1$ to find an integer x such that $27x = 14 \mod 91$.

3 (4 points). Find all prime numbers p such that $p^2 + 2$ is prime.

4 (5 points). Suppose that ax + by = 17, where a, b, x and y are integers. Show that the numbers gcd(a, b) and gcd(x, y) are divisors of 17. Decide which, if any, of the following four possibilities can occur:

(i) gcd(a, b) = gcd(x, y) = 1;

(ii) gcd(a, b) = 17 and gcd(x, y) = 1;

- (iii) gcd(a, b) = 1 and gcd(x, y) = 17;
- (iv) gcd(a, b) = gcd(x, y) = 17.

5 (6 points). Suppose that n is composite: an integer greater than 1 that is not prime. Show that (n-1)! and n are not relatively prime. Prove that the congruence $(n-1)! \equiv -1 \mod n$ is false.

6 (6 points). Prove that -1 is not a square modulo the prime p if $p \equiv 3 \mod 4$.

7 (6 points). Show that $x^8 \equiv 1 \mod 20$ if x is an integer that is prime to 20. Find the integer t such that $t^9 = 760231058654565217 \approx 7.60231 \times 10^{17}$.

Second Midterm Exam

October 28, 1999

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully. Don't worry too much about simplifying arithmetical expressions; " $3 \cdot 5 + 1$ " is the same answer as "16" in most contexts.

1 (5 points). Suppose that n and m are positive integers, that p is a prime and that α is a non-negative integer. Assume that n is divisible by p^{α} , that m is prime to p and that $F = \frac{n}{m}$ is an integer. Show that F is divisible by p^{α} .

2 (6 points). Let f(x) be a polynomial with integer coefficients that satisfies f(1) = f'(1) = 3. Calculate the remainder when f(-18) is divided by 19^2 .

3 (5 points). Determine the number of solutions to the congruence $x^2 + x + 1 \equiv 0 \mod 7^{11}$.

4 (6 points). Find an integer $n \ge 1$ so that $a^{3n} \equiv a \mod 85$ for all integers a that are divisible neither by 5 nor by 17.

5 (6 points). Find the number of solutions mod 120 to the system of congruences $x \equiv \begin{cases} 2 \mod 4 \\ 3 \mod 5 \\ 4 \mod 6 \end{cases}$

6 (7 points). If m = 15709, we have $2^{(m-1)/2} \equiv 1 \mod m$ and $2^{(m-1)/4} \equiv 2048 \mod m$. With the aid of these congruences, one can find quite easily a positive divisor of m that is neither 1 nor m. Explain concisely: how to find such a divisor, and why your method works.

Final Exam

December 14, 1999

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully.

Each question is worth 6 points.

1. Let *n* be an integer greater than 1. Let *p* be the smallest prime factor of *n*. Show that there are integers *a* and *b* so that an + b(p - 1) = 1.

2. Using the identity $27^2 - 8 \cdot 91 = 1$, describe the set of all integers x that satisfy the two congruences $x \equiv \begin{cases} 35 \mod 91 \\ 18 \mod 27 \end{cases}$.

3. Let $m = 2^2 3^3 5^5 7^7 11^{11}$. Find the number of solutions to $x^2 \equiv x \mod m$.

- 4. Calculate $\left(\frac{-30}{p}\right)$, where p is the prime 101. Justify each equality that you use.
- 5. Write $2 + \sqrt{8}$ as an infinite simple continued fraction.
- **6**. Find the number of primitive roots mod p^2 when p is the prime 257.

7. Express the continued fraction (6, 6, 6, ...) in the form $a + b\sqrt{d}$, with a and b rational numbers and d a positive non-square integer.

8. Suppose that $p = a^2 + b^2$, where p is an odd prime number and a is odd. Show that $\left(\frac{a}{p}\right) = +1$. (Use the Jacobi symbol.)

9. Let *n* be an integer. Show that *n* is a difference of two squares (i.e., $n = x^2 - y^2$ for some $x, y \in \mathbf{Z}$) if and only if *n* is either odd or divisible by 4.

10. Let n be an integer greater than 1. Prove that 2^n is not congruent to $1 \mod n$.