First Midterm Exam

September 23, 1999
This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully.

1 (4 points). Find the remainder when 2^{33} is divided by 31 .
2 (4 points). Use the identity $27^{2}-8 \cdot 91=1$ to find an integer x such that $27 x=14 \bmod 91$.
3 (4 points). Find all prime numbers p such that $p^{2}+2$ is prime.
4 (5 points). Suppose that $a x+b y=17$, where a, b, x and y are integers. Show that the numbers $\operatorname{gcd}(a, b)$ and $\operatorname{gcd}(x, y)$ are divisors of 17. Decide which, if any, of the following four possibilities can occur:
(i) $\operatorname{gcd}(a, b)=\operatorname{gcd}(x, y)=1$;
(ii) $\operatorname{gcd}(a, b)=17$ and $\operatorname{gcd}(x, y)=1$;
(iii) $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(x, y)=17$;
(iv) $\operatorname{gcd}(a, b)=\operatorname{gcd}(x, y)=17$.

5 (6 points). Suppose that n is composite: an integer greater than 1 that is not prime. Show that $(n-1)$! and n are not relatively prime. Prove that the congruence $(n-1)!\equiv-1 \bmod n$ is false.

6 (6 points). Prove that -1 is not a square modulo the prime p if $p \equiv 3 \bmod 4$.
7 (6 points). Show that $x^{8} \equiv 1 \bmod 20$ if x is an integer that is prime to 20. Find the integer t such that $t^{9}=760231058654565217 \approx 7.60231 \times 10^{17}$.

Second Midterm Exam

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully. Don't worry too much about simplifying arithmetical expressions; " $3 \cdot 5+1$ " is the same answer as " 16 " in most contexts.

1 (5 points). Suppose that n and m are positive integers, that p is a prime and that α is a nonnegative integer. Assume that n is divisible by p^{α}, that m is prime to p and that $F=\frac{n}{m}$ is an integer. Show that F is divisible by p^{α}.

2 (6 points). Let $f(x)$ be a polynomial with integer coefficients that satisfies $f(1)=f^{\prime}(1)=3$. Calculate the remainder when $f(-18)$ is divided by 19^{2}.

3 (5 points). Determine the number of solutions to the congruence $x^{2}+x+1 \equiv 0 \bmod 7^{11}$.
4 (6 points). Find an integer $n \geq 1$ so that $a^{3 n} \equiv a \bmod 85$ for all integers a that are divisible neither by 5 nor by 17 .

5 (6 points). Find the number of solutions $\bmod 120$ to the system of congruences $x \equiv\left\{\begin{array}{ll}2 & \bmod 4 \\ 3 & \bmod 5 \\ 4 & \bmod 6\end{array}\right.$.
6 (7 points). If $m=15709$, we have $2^{(m-1) / 2} \equiv 1 \bmod m$ and $2^{(m-1) / 4} \equiv 2048 \bmod m$. With the aid of these congruences, one can find quite easily a positive divisor of m that is neither 1 nor m. Explain concisely: how to find such a divisor, and why your method works.

Final Exam

December 14, 1999
This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully.

Each question is worth 6 points.

1. Let n be an integer greater than 1 . Let p be the smallest prime factor of n. Show that there are integers a and b so that $a n+b(p-1)=1$.
2. Using the identity $27^{2}-8 \cdot 91=1$, describe the set of all integers x that satisfy the two congruences $x \equiv\left\{\begin{array}{ll}35 & \bmod 91 \\ 18 & \bmod 27\end{array}\right.$.
3. Let $m=2^{2} 3^{3} 5^{5} 7^{7} 11^{11}$. Find the number of solutions to $x^{2} \equiv x \bmod m$.
4. Calculate $\left(\frac{-30}{p}\right)$, where p is the prime 101. Justify each equality that you use.
5. Write $2+\sqrt{8}$ as an infinite simple continued fraction.
6. Find the number of primitive roots $\bmod p^{2}$ when p is the prime 257 .
7. Express the continued fraction $\langle 6,6,6, \ldots\rangle$ in the form $a+b \sqrt{d}$, with a and b rational numbers and d a positive non-square integer.
8. Suppose that $p=a^{2}+b^{2}$, where p is an odd prime number and a is odd. Show that $\left(\frac{a}{p}\right)=+1$. (Use the Jacobi symbol.)
9. Let n be an integer. Show that n is a difference of two squares (i.e., $n=x^{2}-y^{2}$ for some $x, y \in \mathbf{Z}$) if and only if n is either odd or divisible by 4 .
10. Let n be an integer greater than 1 . Prove that 2^{n} is not congruent to $1 \bmod n$.
