## Programs for the HP-28S

These programs offer weak emulation of some of the most fundamental of the Turbo Pascal programs discussed in the preceding two sections. If the HP-28S is to be used extensively, then one would want to enlarge the collection to make it more comprehensive. It would also be desirable to have programs that employ binary integer variables (unsigned 64-bit integers). Their use would allow calculations up to $10^{18}$. You may find it convenient to place these programs in a user subdirectory called NOTHY, say.

## CRT

| Function | Determines the intersection of two arithmetic progressions. That is, |
| :--- | :--- |
| it expresses the simultaneous conditions $x \equiv a_{1}\left(\bmod m_{1}\right), x \equiv a_{2}$ |  |
| $\left(\bmod m_{2}\right)$ as a single congruence $x \equiv a(\bmod m)$, if the intersection |  |
| is non-empty. If the intersection is empty then the message "No such |  |
| number" is returned. |  |

Stack Action


Restrictions $\left|a_{i}\right|<10^{11}, 0<m_{i}<10^{11}$. If the intersection is non-empty but $m>10^{11}$, then the message "Bad mod" is returned.

Algorithm $\quad$ Same as for the Turbo Pascal program of the same name.


Calls LNCN, MULT, SETM
Comments This program may be invoked $k-1$ times in order to find the intersection of $k$ given arithmetic progressions.

## FAC

Function $\quad$ FACtors $n$ by trial division. Thus $n=p_{1} p_{2} \ldots p_{r}$ with $p_{1} \leq p_{2} \leq \ldots \leq$ $p_{r}$.

Stack Action


Restrictions $\quad 0<n<10^{12}$
Algorithm Trial division. After powers of 2, 3, and 5 have been removed, trial divisors are taken from the reduced residue classes modulo 30 .

```
Listing \(\ll 2\) TRIAL \(1+\) TRIAL \(2+\) TRIAL \(2+\)
    WHILE
        DUP2 DUP * \(\geq\)
        REPEAT
        TRIAL 4 + TRIAL 2 + TRIAL 4 + TRIAL 2 +
        TRIAL 4 + TRIAL \(6+\) TRIAL 2 + TRIAL \(6+\)
    END
    DROP DUP IF 1 == THEN DROP END
    440 . 25 BEEP
    \(\gg\)
Calls
TRIAL
See Also Rho
Comments If \(n>10^{12}\) then the factorization given is erroneous.
```


## GCD

Function
Calculates the Greatest Common Divisor $g$ of two given integers $b, c$. If $b=c=0$ then the error message " $(0,0)$ undefined." is returned.

## Stack Action



Restrictions $\quad|b|<10^{12},|c|<10^{12}$

## Algorithm Euclidean algorithm.

```
Listing << b c
    < b ABS 'b' STO c ABS 'c' STO
        IF b 0 == c 0 == AND
        THEN "(0,0) undefined." KILL END
        WHILE c 0 >
        REPEAT
            b c MOD c 'b' STO 'c' STO
        END
        b
    >
>
```

Comments If $|b|>10^{12}$ or $|c|>10^{12}$ then the value returned is likely to be incorrect.

## INVERSE

Function Takes $a$ from the stack and returns $\bar{a}$ such that $0<\bar{a}<m$ and $a \bar{a} \equiv$ $1(\bmod m)$, if such a number exists. Otherwise it returns the error message, "No such number" and kills the program.

## Stack Action

$$
\begin{array}{cc}
\vdots \\
a & \\
\vdots & \bar{a}
\end{array}
$$

Restrictions $\quad|a|<10^{11}, 0<m<10^{11}$
Algorithm Extended Euclidean Algorithm.

| Listing | $\ll a$ |
| :--- | :--- |
|  | $\ll a 1$ LNCN DROP $\gg$ |
|  |  |

Calls LNCN, MULT
Comments The value of $m$ is specified by using the program SETM.

## LNCN

Function
Given a LiNear CoNgruence $a x \equiv b(\bmod m)$, numbers $x_{0}$ and $m_{0}$ are found such that the solutions are precisely those $x$ such that $x \equiv x_{0}$ $\left(\bmod m_{0}\right)$, if the congruence has a solution. Otherwise the error message "No such number" is returned, and the prgram is killed.


Restrictions $\quad|a|<10^{11},|b|<10^{11}, 0<m<10^{11}$
Algorithm Extended Euclidean algorithm.

```
Listing \(\quad \ll\) a b
    \(\ll \mathrm{b}\) M MOD 'b' STO M \(100 \rightarrow c u 0\) u1 q
        \(\ll\) WHILE
            c \(0>\)
                REPEAT
                    a a c / FLOOR DUP 'q' STO c * - c 'a' STO 'c' STO
                    u0 u1 DUP 'u0' STO q * - 'u1' STO
        END
        b a / DUP DUP FLOOR
        IF > THEN DROP "No such number." KILL END
        M a / M \(\rightarrow\) m1 m2
            \(\ll \mathrm{m} 1^{\prime}{ }^{\prime}\) ' STO
                IF uO DUP 0 < THEN M + END
                MULT M m2 'M' STO
            \(\gg\)
        \(\gg\)
    \(\gg\)
\(\gg\)
Calls MULT
Comments The value of \(m\) is specified by using the program SETM.
```


## M

Function A stored variable, used as the modulus in congruence arithmetic.
Restrictions $\quad 0<M<10^{11}$
Comments The value of $M$ is specified by the program SETM.

## MULT

Function Given $a$ and $b$, returns the unique number $c$ such that $c \equiv a b(\bmod m)$ and $0 \leq c<m$.

## Stack Action



Restrictions $0 \leq a \leq m, 0 \leq b \leq m, 0<m<10^{11}$
Algorithm "Russian multiplication" base $g=\left[5 \cdot 10^{11} / \mathrm{m}\right]$. See Problem 21 on p. 83. of the text.

Listing

```
<< x y
    << 5E11 M / FLOOR
        s g<< WHILE y 0 >
            REPEAT
                y y g / FLOOR DUP 'y' STO
                g * - x * s + M MOD
                    's' STO x g * M MOD 'x' STO
            END
            S
    >
>
```


## P?

Function Determines whether a number $m$ is prime.

## Stack Action

$$
\begin{array}{ccc}
\vdots & & \vdots \\
m & & m \\
m & & \text { "is prime." } \\
\text { "is composite." } & \text { "is too large." }
\end{array}
$$

Restrictions $\quad 1 \leq m \leq 25 \cdot 10^{9}$
Algorithm Strong pseudoprime tests are performed until $m$ is proved to be prime, or until $m$ is found to be composite. Use is made of the known fact that if $1 \leq m \leq 25 \cdot 10^{9}$ and if $m$ is a strong probable prime base $2,3,5,7$ then $m$ is prime unless $m=3,215,031,751$.

```
Listing
\(\ll \rightarrow \mathrm{m}\)
    \(\ll I F\)
        m 25000000000 >
        THEN
            m "is too large."
        ELSE
            m SETM 2 SPSP
            IF
                    0 ==
                THEN
                    m "is composite."
            ELSE
                IF
                        m 2047 <
                THEN
                    m "is prime."
                    ELSE
                            3 SPSP
                IF
                    \(0=\)
                THEN
                    M "is composite."
                ELSE
                                    IF
                                    m 1373653 <
                                    THEN
                                    m "is prime."
                                    ELSE
                                    5 SPSP
                                    IF
                                    \(0=\)
                                    THEN
                                    m "is composite."
                                    ELSE
                                    IF
                                    m 25326001 <
                                    THEN
                                    m "is prime."
                                    ELSE
```

```
                                    7 SPSP
                                    IF
                                    0 == m 3215031751 == OR
                                    THEN
                                    m "is composite."
                                    ELSE
                                    m "is prime."
                                    END
                                    END
                    END
                    END
                        END
                    END
                        END
            END
            526 . 25 BEEP
        >
    >
Calls MULT, POWER, SETM, SPSP
```


## POWER

Function $\quad$ Finds the unique number $a$ such that $0 \leq a<m$ and $a \equiv x^{k} \quad(\bmod m)$.

## Stack Action



Restrictions $\quad|x|<10^{12}, 0 \leq k<10^{12}, 0<m<10^{11}$
Algorithm The exponent $k$ is expanded in binary, and the base $x$ is repeatedly squared.

Listing

```
<< x y
    \ll 1 \rightarrow ~ p
        << M MOD 'x' STO
        WHILE y O >
        REPEAT
                        y y 2 / FLOOR DUP 'y' STO 2 * -
                        IF 1 == THEN p x MULT 'p' STO END
                        x x MULT 'x' STO
                END
                p
```



Calls MULT
Comments The value of $m$ is specified by the program SETM.

## QUIT

Function Returns the machine to the root directory.
Listing $\ll$ HOME $\gg$

## RHO

Function
The Pollard RHO method is used to search for factors of $m$, say $m=a b$. The numbers $a, b$ found are not necessarily prime. This method should only be applied to numbers $m$ that are already known to be composite.

## Stack Action

|  | $\vdots$ |  |
| :---: | :---: | :---: |
|  |  |  <br> $m$ <br> $m$ |
|  |  |  |
| $a$ |  |  |
| $b$ |  |  |

Restrictions $\quad 0<m<10^{11}$
Algorithm $\quad$ The sequence $u_{n}(\bmod m)$ is generated by the recurrence $u_{n+1} \equiv u_{n}^{2}+$ $s(\bmod m)$, with the initial condition $u_{0}=r$. The program takes $r=s=1$. The quantity $\left(u_{2 n}-u_{n}, m\right)$ is calculated for successive values of $n$, until it takes a value strictly between 1 and $m$. If it takes the value $m$ then the program is terminated with the message "Test inconclusive." In such a case one should edit the program to use a different value of $s$. However, one should avoid $s=0, s=-2$.

## Listing

```
<<m
    <<1 H r s<< m DUP SETM r DUP 1
    WHILE
                            DUP 1 ==
                            REPEAT
                            DROP DUP MULT s + SWAP DUP MULT
                            s + DUP MULT s + SWAP DUP2 - m GCD
                            END
                            3 ROLLD DROP2 DUP
    IF
```

```
                        m ==
    THEN
        "Test inconclusive."
    ELSE
        DUP2 /
    END
    880 . 25 BEEP
    >
    >
Calls MULT, SETM
```


## SETM

Function Assigns a value to the variable $M$, used as the modulus in congruence arithmetic.

## Stack Action

$$
M \quad \longrightarrow \quad \vdots
$$

Restrictions $\quad 0<M<10^{11}$
Listing $\ll$ DUP DUP DUP
IF
0 > SWAP 1E11 < AND
SWAP DUP FLOOR == AND
THEN
'M' STO 0 FIX
ELSE
"BAD MOD" KILL
END
$\gg$

## SPSP

Function
The Strong PSeudoPrime test base $a$ is applied to the number $m$. If it is found that $m$ is a strong probable prime base $a$ then the number 1 is returned. Otherwise $m$ is proved to be composite, and the number 0 is returned.

## Stack Action

$$
\begin{array}{cc}
\vdots & \vdots \\
a & \longrightarrow
\end{array} \quad 0 \text { or } 1
$$

```
Restrictions 1<m<10
Algorithm The strong pseudoprime test, as explained on p. }78\mathrm{ of the text.
Listing << a
    < IF
        M DUP DUP 2 / FLOOR 2 * == SWAP 2 > AND
        THEN
            0
        ELSE
            0 0 T j k
            < M 1-
                WHILE
                                    DUP DUP 2 / FLOOR DUP 3 ROLLD 2 * ==
                                    REPEAT
                                    SWAP DROP 1 k + 'k' STO
                    END
                        DROP a SWAP POWER DUP DUP
                        IF
                        1 == SWAP M 1 - == OR
                        THEN
                                DROP 1
                        ELSE
                    1 CF
                    WHILE
                            1 FC? j k 1 - < AND
                            REPEAT
                                    DUP MULT 1 j + 'j' STO
                                    IF DUP 1 == THEN 1 SF DROP O END
                                    IF DUP M 1 - == THEN 1 SF DROP 1 END
                    END
                    IF 1 FC?C THEN DROP O END
                    END
                >
        END
    >
>
Calls MULT, POWER
Comments The value of \(m\) is specified by using the program SETM.
```


## TRIAL

Function This is a subroutine used in the program FAC. It executes TRIAL divisions, so that the integer $k$ is found such that $d^{k} \| n$.

## Stack Action



| Restrictions | $0<d<10^{12}, 0<n<10^{12}$ |
| :--- | :--- |
| Listing | $\ll$ WHILE |
|  | $\quad$ DUP2 MOD 0 $==$ |
|  | REPEAT |
|  | $\quad$ DUP 3 ROLLD / OVER |
|  | $>$ |

## Further Resources

The sources listed below have not been fully tested. They may contain bugs, and should be used at your own risk. All the software listed below can be obtained by using the file transfer program ftp. If you have the ftp software and a link to the internet, then you may connect to a remote host and retrieve software. To do this, type
ftp hostname
and then press the Return (or Enter) key. Here "hostname" is the electronic address of the remote host. Alternatively, you may type
ftp
which will give you the prompt ftp>, and then type
open hostname
If you are prompted to provide a login name, then type
anonymous
Otherwise, type
login anonymous
Then you will be prompted for a password. Type your own electronic address. In most cases, the software you want is in a subdirectory. To change to the subdirectory "pub", for example, type
cd pub or else cd /pub
You may have to change directories yet again, say to the subdirectory "msdos". You can accomplish both changes in one step by typing

```
cd /pub/msdos
```

If, in exploring subdirectories, you find that you have wandered too far down the directory tree, and want to return to the parent of the current directory, then type

```
cd ..
```

Further Resources

To ascertain the name of the current working directory on the remote machine, type

## pwd

In any particular directory, you can obtain a list of the files and subdirectories by typing

```
ls or else dir
```

These commands are handy if you are unsure of the exact name of the file you wish to retrieve. Once you are in the appropriate subdirectory, and have determined the name of the file you wish to transfer, say "clint1.tex", type

```
get clint1.tex
```

If you wish to "get" all the files in the current directory, you can ask for a "multiple get" by typing

```
mget *
```

Text files can be transferred in the default ASCII mode, but most software must be transferred in binary. To prepare for binary transfers, issue the command

```
type binary
```

When you wish to terminate your ftp session, type
quit
Since the availability of software may change with time, the information provided below will gradually become inaccurate. If your system has the ARCHIE program, you may use it to locate sources of software. Try typing

```
archie pari
```


## CLINT

This lab manual, and the Turbo Pascal programs that are meant to be used with it, can be obtained by anonymous ftp from ftp.math.lsa.umich.edu in the subdirectory /pub/clint. The following files are available:

## FILENAME CONTENTS

```
readme general instructions
    clint0.tex title page of lab manual
```

```
    clint1.tex forematter (pages ii-x) of lab manual
    clint2.tex the labs (pages 1-68)
    clint3.tex program documentation (pages 69-106)
    clint4.tex programs for HP-28S, Further Resources
    error5-1.tex Known errors in Niven-Zuckerman-Montgomery
    (Fifth Edition, First Printing)
tpprgms2.exe Turbo Pascal programs (archived)
```

The .tex files will run on any system equipped with the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ software, but the Turbo Pascal programs run only under DOS on IBM-compatible PCs. Both source code and compiled code are provided. If you plan to alter the source code or write your own programs you will need the Borland Turbo Pascal compiler, or else some other Pascal compiler. The file tpprgms2.exe is a self-extracting archive file that compresses into 1.3 M what would otherwise be 145 Turbo Pascal files occupying 2.37 M . The command type binary must be given before this file is transferred. The other files should be transferred as ascii files (issue the command type ascii). Instructions for decompressing tpprgms2.exe are found in the readme file. Users are encouraged to edit the laboratories, and to customize the manual for their own use. If you are unable to obtain this material by ftp, write to

Mathematics Editor<br>John Wiley \& Sons<br>605 Third Avenue<br>New York, NY 10158-0012

Upon receiving your request, you will be sent a printed copy of this lab manual and a 3.5 inch disk containing the tpprgms2.exe and readme files. For instructors only, the publisher will also provide a printed copy of the Solutions Manual for the Niven-ZuckermanMontgomery text.

## GP

GP is an interactive calculator based on the PARI library of routines. See PARI for more details.

## Malm

Donald E. G. Malm has written a large number of instructive programs, some in UBASIC, others in Turbo Pascal. These files can be obtained by anonymous ftp. Connect to the address vela.acs.oakland.edu, and then change to the subdirectory /pub/numbdroid. These are text files, so transfers should be made with the type ascii. If you have difficulty obtaining these files, send an email message to malm@argo.acs.oakland.edu, or write to

Professor Donald E. G. Malm<br>Department of Mathematical Sciences<br>Oakland University<br>Rochester, MI 48309-4401

Further Resources

## Numbers

Numbers (Version 2.01) is a program written in Turbo Pascal 5.0 for IBM-compatible PCs by Ivo Düntsch of the Mathematics Department, Universität Osnabruck, Moorlandstr. 59, 4500 Osnabruck, Germany. It offers a wide variety of routines, accessed by a menu hierarchy. The program is aimed at students rather than researchers, and is available free of charge for educational purposes by anonymous ftp from clione.t2.uni-osnabrueck.de in the directory publ $/ \mathrm{msdos} / \mathrm{math}$. For further information see the review in the $A M S$ Notices 39 (1992), 840-841, by Louis D. Grey.

## PARI

PARI takes its name from Pascal arithmetic, although eventually the code was written in C and assembler. It does not offer symbolic manipulation to the extent of Maple, for example, but it provides powerful routines for use in number-theoretic investigations. It was designed by C. Batut, D. Bernardi, H. Cohen and M. Olivier, with researchers in mind. It runs on the SUN3, SPARC, Macintosh II, NeXT, Amiga, on 32-bit PCs running MSDOS or OS2. It is available by anonymous ftp from megrez.ceremab.u-bordeaux.fr and also from math.ucla.edu, in the subdirectory /pub/pari. The transfer must be made in binary. Version 1.38, released in September, 1993, differs from the former Version 1.37 in several important ways, most notably in the introduction of a package for computations in algebraic number fields. The package includes $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ files that produce a 130 page manual and a 30 tutorial. For more information, see the review of Q. Gouvêa, AMS Notices 38 (1991), 903-904.

## SEQUENCES

N. J. A. Sloane's book A Handbook of Integer Sequences, Academic Press, New York, 1973 can now be queried by email. To submit sequences for examination, send an email message to sequences@research.att.com. Each line of your message should be of the following form:
lookup 49162536
lookup 3581321
If your message is not of this form, then in reply you will recevie an explanation of the correct notation. A second program is also available, for the purpose of trying to identify a given sequence. To use it, send an email message to superseeker@research.att.com. Only one request may be made per message; your message should consist of a single line of the form

```
lookup 11 3 5 7 7 9 11 13 15 17 19 21 23 25 27 29 31
```

Start at the beginning, and give lots of terms. Negative entries are acceptable. The program will try very hard to find an explanation. The program invoked is complicated, and still under development. Because some serious computing is executed, users are limited to one query per hour. If you encounter a bug with the program, please report it to Neil Sloane at njas@research.att.com.

## SIMATH

SIMATH is written in C, and offers many C-functions over algebraic structures such as arbitrarily long integers, rational numbers, floating point numbers, polynomials, Galois fields, matrices, elliptic curves, algebraic number fields, congruence arithmetic, etc. The package includes an interactive calculator, SIMCALC, that can access many of these routines, including arithmetic of finite fields and elliptic curves. In Version 3.8.1, released in March of 1994, includes an algorithm for calculating Groebner bases. The package runs successfully on a variety of machines, such as Sun $3 / 140$ under SunOS 3.4, and Sun SPARCstation under SunOS 4.1.1. The package is available by anonymous ftp from ftp.math.uni-sb.de and from ftp.math.orst.edu

## UBASIC

UBASIC is a high-precision version of BASIC for IBM-compatible PCs, written by Yuji Kida. It provides fast arithmetic for integers of up to 2600 digits, and is aimed at students of number theory. It comes with on-line help and sample programs. It is available free of charge by anonymous ftp from math.mps.ohio-state.edu in the subdirectory /pub/msdos/ubasic. The transfer must be made in binary. The main files are archived as .zip files. A suitable unzip program is provided in the same directory. The transfer must be made in binary. For further information see the reviews of Walter D. Neumann in the AMS Notices 36 (1989), 557-559; 38 (1991), 196-197. Version 8.74 was released in May, 1994. If you are using Version 8.30 or earlier and DOS5 or later then you should upgrade to avoid a memory-handling problem.

