Programs for the HP–28S

These programs offer weak emulation of some of the most fundamental of the Turbo Pascal programs discussed in the preceding two sections. If the HP–28S is to be used extensively, then one would want to enlarge the collection to make it more comprehensive. It would also be desirable to have programs that employ binary integer variables (unsigned 64-bit integers). Their use would allow calculations up to 10^{18} . You may find it convenient to place these programs in a user subdirectory called NOTHY, say.

\mathbf{CRT}

Function Determines the intersection of two arithmetic progressions. That is, it expresses the simultaneous conditions $x \equiv a_1 \pmod{m_1}$, $x \equiv a_2 \pmod{m_2}$ as a single congruence $x \equiv a \pmod{m}$, if the intersection is non-empty. If the intersection is empty then the message "No such number" is returned.

Stack Action

÷		
a_1		
m_1	\longrightarrow	÷
a_2		a
m_2		m

Restrictions	$ a_i < 10^{11}$, $0 < m_i < 10^{11}$. If the intersection is non-empty but $m > 10^{11}$, then the message "Bad mod" is returned.
Algorithm	Same as for the Turbo Pascal program of the same name.
Listing	
Calls	LNCN, MULT, SETM
Comments	This program may be invoked $k-1$ times in order to find the intersection of k given arithmetic progressions.

Programs for the HP-28S

FAC

Function	FACtors <i>n</i> by trial division. Thus $n = p_1 p_2 \dots p_r$ with $p_1 \le p_2 \le \dots \le p_r$.	
Stack Action	$\begin{array}{ccc} & \vdots & & \\ & & p_1 & & \\ & & p_2 & & \\ \vdots & \longrightarrow & \vdots & \\ n & & & p_r \end{array}$	
Restrictions	$0 < n < 10^{12}$	
${f Algorithm}$	Trial division. After powers of 2, 3, and 5 have been removed, trial divisors are taken from the reduced residue classes modulo 30.	
Listing	$\ll 2 \text{ TRIAL 1 + TRIAL 2 + TRIAL 2 + } \\ \text{WHILE} \\ \text{DUP2 DUP *} \geq \\ \text{REPEAT} \\ \text{TRIAL 4 + TRIAL 2 + TRIAL 4 + TRIAL 2 + } \\ \text{TRIAL 4 + TRIAL 6 + TRIAL 2 + TRIAL 6 + } \\ \text{END} \\ \text{DROP DUP IF 1 == THEN DROP END} \\ \text{440 .25 BEEP} \\ \gg$	
Calls	TRIAL	
See Also	Rho	
Comments	If $n > 10^{12}$ then the factorization given is erroneous.	

\mathbf{GCD}

Function	Calculates the Greatest Common Divisor g of two given integers b , c .
	If $b = c = 0$ then the error message "(0,0) undefined." is returned.

Stack Action

$$\begin{array}{cccc} \vdots & & & \\ b & \longrightarrow & \vdots & \\ c & & g \end{array}$$

 ${\rm Restrictions} \qquad |b| < 10^{12}, \ |c| < 10^{12}$

108

${f Algorithm}$	Euclidean algorithm.
Listing	<pre>≪→ b c ≪ b ABS 'b' STO c ABS 'c' STO IF b 0 == c 0 == AND THEN "(0,0) undefined." KILL END WHILE c 0 > REPEAT b c MOD c 'b' STO 'c' STO END b ≫</pre>
Comments	If $ b > 10^{12}$ or $ c > 10^{12}$ then the value returned is likely to be incorrect.

INVERSE

Function	Takes a from the stack and returns \overline{a} such that $0 < \overline{a} < m$ and $a\overline{a} \equiv 1 \pmod{m}$, if such a number exists. Otherwise it returns the error message, "No such number" and kills the program.	
Stack Action		
	$a \longrightarrow \overline{a}$	
Restrictions	$ a < 10^{11}, \ 0 < m < 10^{11}$	
Algorithm	Extended Euclidean Algorithm.	
Listing	$\ll \rightarrow$ a \ll a 1 LNCN DROP \gg \gg	
Calls	LNCN, MULT	
Comments	The value of m is specified by using the program SETM.	

LNCN

Function	Given a LiNear CoNgruence $ax \equiv b \pmod{m}$, numbers x_0 and m_0
	are found such that the solutions are precisely those x such that $x \equiv x_0$
	$(\mod m_0)$, if the congruence has a solution. Otherwise the error message
	"No such number" is returned, and the prgram is killed.

Programs for the HP-28S

Stack Action

	: :
	$a \longrightarrow x_0$
	$b m_0$
Restrictions	$ a < 10^{11}, \ b < 10^{11}, \ 0 < m < 10^{11}$
${f Algorithm}$	Extended Euclidean algorithm.
Listing	$\ll ightarrow$ a b
0	\ll b M MOD 'b' STO M 1 0 0 \rightarrow c u0 u1 g
	≪ WHILE
	c 0 >
	REPEAT
	a a c / FLOOR DUP 'q' STO c * - c 'a' STO 'c' STO
	u0 u1 DUP 'u0' STO q * - 'u1' STO
	END
	b a / DUP DUP FLOOR
	IF > THEN DROP "No such number." KILL END
	M a / M \rightarrow m1 m2
	\ll m1 'M' STO
	IF uO DUP O < THEN M + END
	MULT M m2 'M' STO
	\gg
	>>
	≫
	\gg
Calls	MULT
Comments	The value of m is specified by using the program SETM.

\mathbf{M}	
Function	A stored variable, used as the modulus in congruence arithmetic.
Restrictions	$0 < M < 10^{11}$
Comments	The value of M is specified by the program SETM.

MULT

Function	Given a and b, returns the unique number c such that $c \equiv ab \pmod{m}$ and $0 \leq c < m$.	
Stack Action	$\begin{array}{cccc} \vdots & & & \\ a & \longrightarrow & \vdots \\ b & & c \end{array}$	
Restrictions	$0 \le a \le m , \; 0 \le b \le m , \; 0 < m < 10^{11}$	
${f Algorithm}$	"Russian multiplication" base $g = [5 \cdot 10^{11}/m]$. See Problem 21 on p. 83. of the text.	
Listing	<pre>≪→ x y ≪ 0 5E11 M / FLOOR → s g≪ WHILE y 0 > REPEAT y y g / FLOOR DUP 'y' STO g * - x * s + M MOD 's' STO x g * M MOD 'x' STO END s ≫ ≫</pre>	

P?

Function Determines whether a number m is prime.

Stack Action

Programs for the HP-28S

Restrictions $1 \le m \le 25 \cdot 10^9$

 $\ll \rightarrow$ m \ll IF

Algorithm Strong pseudoprime tests are performed until m is proved to be prime, or until m is found to be composite. Use is made of the known fact that if $1 \le m \le 25 \cdot 10^9$ and if m is a strong probable prime base 2, 3, 5, 7 then m is prime unless m = 3,215,031,751.

Listing

```
m 2500000000 >
THEN
 m "is too large."
ELSE
 m SETM 2 SPSP
  IF
    0 ==
  THEN
   m "is composite."
  ELSE
   IF
     m 2047 <
   THEN
     m "is prime."
   ELSE
     3 SPSP
     IF
       0 ==
     THEN
       M "is composite."
     ELSE
       IF
         m 1373653 <
       THEN
         m "is prime."
       ELSE
         5 SPSP
         IF
           0 ==
         THEN
           m "is composite."
         ELSE
           IF
             m 25326001 <
           THEN
             m "is prime."
           ELSE
```

```
7 SPSP
                  IF
                    0 == m 3215031751 == OR
                  THEN
                    m "is composite."
                  ELSE
                    m "is prime."
                  END
                END
              END
            END
          END
        END
      END
     END
    526 .25 BEEP
  \gg
\gg
MULT, POWER, SETM, SPSP
```

Calls

POWER

Function Finds the unique number a such that $0 \le a < m$ and $a \equiv x^k \pmod{m}$. Stack Action

•		
x	\longrightarrow	÷
k		a

Restrictions	$ x < 10^{12}, \ 0 \le k < 10^{12}, \ 0 < m < 10^{11}$
${f Algorithm}$	The exponent k is expanded in binary, and the base x is repeatedly squared.
Listing	<pre>≪→ x y ≪1 → p ≪ x M MOD 'x' STO WHILE y O > REPEAT y y 2 / FLOOR DUP 'y' STO 2 * - IF 1 == THEN p x MULT 'p' STO END x x MULT 'x' STO END p</pre>

Programs for the HP-28S

	>
	>
	\gg
Calls	MULT
Comments	The value of m is specified by the program SETM.

QUIT

Function	Returns the machine to the root directory.
Listing	\ll HOME \gg

RHO		
Function	The Pollard RHO method is used to search for factors of m , say $m = a^{2}$. The numbers a , b found are not necessarily prime. This method should only be applied to numbers m that are already known to be composite	
Stack Action		
	:	
	m	
	$\vdots \longrightarrow a$	
	m b	
Restrictions	$0 < m < 10^{11}$	
Algorithm	The sequence $u_n \pmod{m}$ is generated by the recurrence $u_{n+1} \equiv u_n^2 + s \pmod{m}$, with the initial condition $u_0 = r$. The program takes $r = s = 1$. The quantity $(u_{2n} - u_n, m)$ is calculated for successive	

$r = s = 1$. The quantity $(u_{2n} - u_n, m)$ is calculated for successive
values of n , until it takes a value strictly between 1 and m . If it takes
the value m then the program is terminated with the message "Test
inconclusive." In such a case one should edit the program to use a
different value of s. However, one should avoid $s = 0$, $s = -2$.

Listing	$\ll \to m$
	\ll 1 1 $ ightarrow$ r s \ll m DUP SETM r DUP 1
	WHILE
	DUP 1 ==
	REPEAT
	DROP DUP MULT s + SWAP DUP MULT
	s + DUP MULT s + SWAP DUP2 - m GCD
	END
	3 ROLLD DROP2 DUP
	IF

Programs for the HP-28S

```
m ==
                  THEN
                    "Test inconclusive."
                  ELSE
                    DUP2 /
                  END
                  880 .25 BEEP
               \gg
  \gg
MULT, SETM
```

Calls

SETM

 \gg

Function Assigns a value to the variable M, used as the modulus in congruence arithmetic.

:

Stack Action

		•		
		M	\longrightarrow	÷
Restrictions	$0 < M < 10^{11}$			
Listing <pre></pre>				
	ELSE "BAD MOD" KILL			
	END			
	»			

\mathbf{SPSP}

Function The Strong PSeudoPrime test base a is applied to the number m. If it is found that m is a strong probable prime base a then the number 1 is returned. Otherwise m is proved to be composite, and the number 0 is returned.

Stack Action

Programs for the HP-28S

 $1 < m < 10^{11}$ Restrictions Algorithm The strong pseudoprime test, as explained on p. 78 of the text. Listing $\ll \rightarrow$ a \ll IF M DUP DUP 2 / FLOOR 2 * == SWAP 2 > AND THEN 0 ELSE $0 \hspace{0.1in} 0 \hspace{0.1in} \rightarrow \hspace{0.1in} j \hspace{0.1in} k$ \ll M 1 – WHILE DUP DUP 2 / FLOOR DUP 3 ROLLD 2 * == REPEAT SWAP DROP 1 k + 'k' STO END DROP a SWAP POWER DUP DUP IF 1 == SWAP M 1 - == OR THEN DROP 1 ELSE 1 CF WHILE 1 FC? j k 1 - < AND REPEAT DUP MULT 1 j + 'j' STO IF DUP 1 == THEN 1 SF DROP 0 END IF DUP M 1 - == THEN 1 SF DROP 1 END END IF 1 FC?C THEN DROP O END END \gg END \gg \gg Calls MULT, POWER

Comments The value of m is specified by using the program SETM.

TRIAL

Function This is a subroutine used in the program FAC. It executes TRIAL divisions, so that the integer k is found such that $d^k || n$.

Stack Action

Programs for the HP-28S

Further Resources

The sources listed below have not been fully tested. They may contain bugs, and should be used at your own risk. All the software listed below can be obtained by using the file transfer program ftp. If you have the ftp software and a link to the internet, then you may connect to a remote host and retrieve software. To do this, type

ftp hostname

and then press the Return (or Enter) key. Here "hostname" is the electronic address of the remote host. Alternatively, you may type

ftp

which will give you the prompt ftp>, and then type

open hostname

If you are prompted to provide a login name, then type

anonymous

Otherwise, type

login anonymous

Then you will be prompted for a password. Type your own electronic address. In most cases, the software you want is in a subdirectory. To change to the subdirectory "pub", for example, type

cd pub or else cd /pub

You may have to change directories yet again, say to the subdirectory "msdos". You can accomplish both changes in one step by typing

cd /pub/msdos

If, in exploring subdirectories, you find that you have wandered too far down the directory tree, and want to return to the parent of the current directory, then type

cd ..

Further Resources

To ascertain the name of the current working directory on the remote machine, type

pwd

In any particular directory, you can obtain a list of the files and subdirectories by typing

ls or else dir

These commands are handy if you are unsure of the exact name of the file you wish to retrieve. Once you are in the appropriate subdirectory, and have determined the name of the file you wish to transfer, say "clint1.tex", type

get clint1.tex

If you wish to "get" all the files in the current directory, you can ask for a "multiple get" by typing

mget *

Text files can be transferred in the default ASCII mode, but most software must be transferred in binary. To prepare for binary transfers, issue the command

type binary

When you wish to terminate your ftp session, type

quit

Since the availability of software may change with time, the information provided below will gradually become inaccurate. If your system has the ARCHIE program, you may use it to locate sources of software. Try typing

archie pari

CLINT

This lab manual, and the Turbo Pascal programs that are meant to be used with it, can be obtained by anonymous ftp from ftp.math.lsa.umich.edu in the subdirectory /pub/clint. The following files are available:

FILENAME	CONTENTS
readme	general instructions
clint0.tex	title page of lab manual

Further Resources

children forematter (pages n=x) of fab manua	L1
clint2.tex the labs (pages 1–68)	
clint3.tex program documentation (pages 69–10	06)
clint4.tex programs for HP–28S, Further Resou	urces
error5-1.tex Known errors in Niven-Zuckerman-M	Iontgomery
(Fifth Edition, First Printing)	
tpprgms2.exe Turbo Pascal programs (archived)	

The .tex files will run on any system equipped with the T_EX software, but the Turbo Pascal programs run only under DOS on IBM-compatible PCs. Both source code and compiled code are provided. If you plan to alter the source code or write your own programs you will need the Borland Turbo Pascal compiler, or else some other Pascal compiler. The file tpprgms2.exe is a self-extracting archive file that compresses into 1.3M what would otherwise be 145 Turbo Pascal files occupying 2.37M. The command type binary must be given before this file is transferred. The other files should be transferred as ascii files (issue the command type ascii). Instructions for decompressing tpprgms2.exe are found in the readme file. Users are encouraged to edit the laboratories, and to customize the manual for their own use. If you are unable to obtain this material by ftp, write to

Mathematics Editor John Wiley & Sons 605 Third Avenue New York, NY 10158-0012

Upon receiving your request, you will be sent a printed copy of this lab manual and a 3.5 inch disk containing the tpprgms2.exe and readme files. For instructors only, the publisher will also provide a printed copy of the Solutions Manual for the Niven-Zuckerman-Montgomery text.

\mathbf{GP}

GP is an interactive calculator based on the PARI library of routines. See PARI for more details.

Malm

Donald E. G. Malm has written a large number of instructive programs, some in UBASIC, others in Turbo Pascal. These files can be obtained by anonymous ftp. Connect to the address vela.acs.oakland.edu, and then change to the subdirectory /pub/numbdroid. These are text files, so transfers should be made with the type ascii. If you have difficulty obtaining these files, send an email message to malm@argo.acs.oakland.edu, or write to

Professor Donald E. G. Malm Department of Mathematical Sciences Oakland University Rochester, MI 48309-4401

Further Resources

Numbers

Numbers (Version 2.01) is a program written in Turbo Pascal 5.0 for IBM-compatible PCs by Ivo Düntsch of the Mathematics Department, Universität Osnabruck, Moorlandstr. 59, 4500 Osnabruck, Germany. It offers a wide variety of routines, accessed by a menu hierarchy. The program is aimed at students rather than researchers, and is available free of charge for educational purposes by anonymous ftp from clione.t2.uni-osnabruck.de in the directory publ/msdos/math. For further information see the review in the AMS Notices **39** (1992), 840–841, by Louis D. Grey.

PARI

PARI takes its name from Pascal arithmetic, although eventually the code was written in C and assembler. It does not offer symbolic manipulation to the extent of Maple, for example, but it provides powerful routines for use in number-theoretic investigations. It was designed by C. Batut, D. Bernardi, H. Cohen and M. Olivier, with researchers in mind. It runs on the SUN3, SPARC, Macintosh II, NeXT, Amiga, on 32-bit PCs running MSDOS or OS2. It is available by anonymous ftp from megrez.ceremab.u-bordeaux.fr and also from math.ucla.edu, in the subdirectory /pub/pari. The transfer must be made in binary. Version 1.38, released in September, 1993, differs from the former Version 1.37 in several important ways, most notably in the introduction of a package for computations in algebraic number fields. The package includes T_EX files that produce a 130 page manual and a 30 tutorial. For more information, see the review of Q. Gouvêa, AMS Notices **38** (1991), 903–904.

SEQUENCES

N. J. A. Sloane's book *A Handbook of Integer Sequences*, Academic Press, New York, 1973 can now be queried by email. To submit sequences for examination, send an email message to sequences@research.att.com. Each line of your message should be of the following form:

lookup 4 9 16 25 36 lookup 3 5 8 13 21

If your message is not of this form, then in reply you will recevie an explanation of the correct notation. A second program is also available, for the purpose of trying to identify a given sequence. To use it, send an email message to superseeker@research.att.com. Only one request may be made per message; your message should consist of a single line of the form

lookup 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Further Resources

Start at the beginning, and give lots of terms. Negative entries are acceptable. The program will try *very* hard to find an explanation. The program invoked is complicated, and still under development. Because some serious computing is executed, users are limited to one query per hour. If you encounter a bug with the program, please report it to Neil Sloane at njas@research.att.com.

SIMATH

SIMATH is written in C, and offers many C-functions over algebraic structures such as arbitrarily long integers, rational numbers, floating point numbers, polynomials, Galois fields, matrices, elliptic curves, algebraic number fields, congruence arithmetic, etc. The package includes an interactive calculator, SIMCALC, that can access many of these routines, including arithmetic of finite fields and elliptic curves. In Version 3.8.1, released in March of 1994, includes an algorithm for calculating Groebner bases. The package runs successfully on a variety of machines, such as Sun 3/140 under SunOS 3.4, and Sun SPARCstation under SunOS 4.1.1. The package is available by anonymous ftp from ftp.math.uni-sb.de and from ftp.math.orst.edu

UBASIC

UBASIC is a high-precision version of BASIC for IBM-compatible PCs, written by Yuji Kida. It provides fast arithmetic for integers of up to 2600 digits, and is aimed at students of number theory. It comes with on-line help and sample programs. It is available free of charge by anonymous ftp from math.mps.ohio-state.edu in the subdirectory /pub/msdos/ubasic. The transfer must be made in binary. The main files are archived as .zip files. A suitable unzip program is provided in the same directory. The transfer must be made in binary. For further information see the reviews of Walter D. Neumann in the AMS Notices **36** (1989), 557–559; **38** (1991), 196–197. Version 8.74 was released in May, 1994. If you are using Version 8.30 or earlier and DOS5 or later then you should upgrade to avoid a memory-handling problem.

Further Resources