
LABORATORY 1

GCDs & The Euclidean Algorithm

Programs Used: SlowGCD, FastGCD, GCD, EuAlDem1,
LnComTab, EuAlDem2, GCDTab, EuAlDem3

1. The most direct method of calculating the greatest common divisor of two numbers b
and c would be to make a list of the common divisors, and note the value of the largest
common divisor. This would involve dividing each of the numbers 1, 2, . . . ,min(|b|, |c|)
into both b and c . This brute force method is used by the program SlowGCD. Use
SlowGCD to calculate the value of (1271, 4521). (Type slowgcd [Enter], and then you
will be prompted for the arguments.) Note how long the calculation took. Formulate a
hypothesis about how much longer this program will take to evaluate (12712, 45212). Test
your hypothesis by running SlowGCD with these arguments. Note the running time. In
trying out this program with various arguments, be careful to use small numbers. If you
put in large numbers then the program will run for a long time, and you will have to reboot
your machine (by typing Ctrl-Alt-Del) to recover its use.

Type turbo [Enter]. If your computer finds the Turbo Pascal compiler, then you
will enter the Turbo Pascal Integrated Development Environment. If not, then you will
receive the message “Bad command or file name”, and no harm is done. Supposing that
your call to Turbo Pascal was successful, use your mouse, or type Alt-F, to open the File
menu. Then type O (for “Open”), and finally type slowgcd [Enter]. The source code for
SlowGCD will be displayed on the screen. You can scroll up and down by using the arrow
keys and/or PgUp and PgDn. Note the loop in the function gcd in which t runs from 1
to m . Here common divisors are detected and recorded. The quantity (0, 0) is undefined.
How would the function gcd execute if we had b = 0 and c = 0? Type Alt-x to exit
the Turbo Pascal environment. What happens if you run SlowGCD with b = 0, c = 0?

2. The symbol (b, c) is defined for any pair of integers, not both equal to 0. This quantity
enjoys four basic identities:

i) (b, c) = (−b, c);
ii) (b, c) = (b + mc, c) for all integers m ;
iii) (b, c) = (c, b);
iv) (b, 0) = |b| .

By using these identities systematically (recall pp. 10–12 of NZM), we may reduce the size

Computational Laboratories in Number Theory 1



of the arguments until iv) applies, and the value emerges. For example,

(31, 12) = (31− 2 · 12, 12) = (7, 12)
= (12, 7) = (12− 1 · 7, 7) = (5, 7)
= (7, 5) = (7− 1 · 5, 5) = (2, 5)
= (5, 2) = (5− 2 · 2, 2) = (1, 2)
= (2, 1) = (2− 2 · 1, 1) = (0, 1)
= (1, 0) = 1.

Apply this reasoning to calculate (127, 49), and use the program EuAlDem1 to verify your
arithmetic.

3. In the calculation displayed above, we have written down more than we need. Since
each new number is the remainder after division, it suffices to write down only these
remainders, 31, 12, 7, 5, 2, 1, 0. The gcd of any two consecutive members of this sequence
is constant throughout. When we consider the last two numbers, we see that the gcd is the
last positive remainder in the sequence. Sequences generated in this way are very rapidly
decreasing, and hence are not very long. Thus the gcd is much more quickly determined
by this method—known as the Euclidean Algorithm. The program FastGCD uses this
faster method to evaluate gcds. Apply FastGCD to the same pairs of numbers that you
used with SlowGCD, and record the running times. Also use FastGCD to calculate the
gcd for a pair of 2 digit numbers, a pair of 4 digit numbers, a pair of 8 digit numbers,
a pair of 16 digit numbers. Make a record of the numbers used, and the running times.
How does the running time seem to depend on the size of the inputs?

Enter the Turbo Pascal environment again, and load the program fastgcd. Again
you find a function gcd, but with a rather different method of calculation. Note that the
sequence of remainders is not stored—only the last two are kept, at any one time. How
would this new function gcd behave if the inputs were b = 0, c = 0? When you are
done, type Alt-x to exit Turbo Pascal.

Type ubibm [Enter] to enter the UBASIC environment. (If you are running a 32-bit
machine, such as those with an 80386 or 80486 processor, you can more fully exploit the
power of your machine by typing instead ubibm32.) Type print gcd(1234567, 7654321)
[Enter]. Repeat this with larger arguments, say of 100 digits or more. Do this several
times, with large arguments. When the arguments are large, is the gcd usually large?
What value of the gcd occurs most frequently in your trials? Type system [Enter] to
exit the UBASIC environment.

4. The program LnComTab displays linear combinations xb + yc of two given integers b
and c . Start with b = 9, c = 15. Note that the resulting table is antisymmetric about
the origin. Why is this? What is the smallest number (in absolute value) that you see?
How is this related to (9, 15)? (Recall Theorem 1.4 of NZM.) Is the table periodic in
any way? At what locations do you find a 0? Let C denote a collection of 5 consecutive
columns. Show that every number that occurs somewhere in the table is found exactly

2 Computational Laboratories in Number Theory



once in C . Do the same for R , which consists of 3 consecutive rows of the table. Where
do the numbers “5” and “3” come from? What would they be replaced by, if the values
of b and c were changed? Take now b = 3, c = 5. How is this new table related to the
one you were looking at before? Note that small values on the table follow a line pointing
roughly NorthWest-SouthEast. Use the arrow keys to follow these small values. What is
the slope of the line along which these small values lie?

5. The Euclidean Algorithm can be modified in various ways to make it still faster. For
example, in performing divisions, one may round to the nearest integer instead of rounding
down. This gives rise to negative remainders, but the remainders decrease in absolute value
a little faster than they did before. For example, to calculate (31, 12) in this way, we would
generate the sequence of remainders 31, 12,−5, 2, 1, 0. This sequence saves one step over
the sequence of 3. above. The Turbo Pascal program GCD uses this enhanced scheme.
Type gcd 12345 54321 [Enter], and note the result. This program will prompt you for
the arguments if you forget to put them on the command line. Type gcd [Enter], and
follow the prompts.

To view the source code of the program GCD, type turbo [Enter], and open gcd.
You will note that in the code the function gcd is called, but nowhere in the code is this
function defined. However, you will find the words “uses nothy” in the esoterica at the
top of the program. This refers to a library of seventeen useful number-theoretic functions
and procedures that can be called by other programs. This saves having to write out the
code for gcd every time you need it. Type Alt-F, then O, then nothy [Enter] to view
the source code of this unit. Scroll down a screen or more, until you find

implementation
function GCD(b, c : comp) : comp;

In the lines that follow you will find the code for gcd . Type Alt-x to exit the Turbo
Pascal environment. The advantage of the Pascal program GCD is that it is compiled.
When you type gcd 123 321 [Enter], you are invoking an executable file, gcd.exe. The
disadvantage of this is that it is limited to integers not exceeding 1018 . The advantage of
UBASIC is that you can calculate with integers up to 102600 , but you have to enter the
UBASIC environment to do so.

6. Type eualdem2 [Enter], and then provide the arguments b = 12345, c = 54321.
The remainders are now presented in a neat table. The arguments can be altered without
leaving the table. Type b, then 54321 [Enter], then c, and finally 12345 [Enter].
The two arguments have been reversed. What effect does this have on the sequence of
remainders generated? Does this persist in general? Can you prove it?

Substitute some large arguments, say > 1016 . The table of remainders is now too
large to fit on one screen. Use PgDn and PgUp to scroll down and up through the table.

7. Let j = j(b, c) be the index of the last positive remainder in the sequence of remainders
generated by the Euclidean Algorithm, so that rj = (b, c) and rj+1 = 0. Thus j + 1

Computational Laboratories in Number Theory 3



divisions have been performed in the calculation. For given b and c , the value of j(b, c)
is easily determined by reading the index of the bottom line in the table provided by
EuAlDem2. Using this program, try to answer the following questions. What is the least
pair of integers b , c with b ≥ c > 0 such that j(b, c) = 1? = 2? = 3? = 4? Can you
spot a pattern? Can you prove that it persists?

8. Use EuAlDem2 as in 6. to determine the value of j(b, c). If b and c are large, is j(b, c)
necessarily large? For 10 different pairs of “randomly chosen” large values of b and c ,
record the value of j(b, c). How large is j(b, c) on average?

9. The quotients qi generated by the Euclidean Algorithm are displayed in the table
provided by EuAlDem2. By hand calculation, find a pair b , c of integers, each > 105 ,
such that qi = 1 for all i . (Hint: Start at the end and work back toward the beginning.
If rj = 1 and rj−1 = 1 then

rj−2 = rj−1qj + rj = 1 · 1 + 1 = 2,

rj−3 = rj−2qj−1 + rj−1 = 2 · 1 + 1 = 3,

and so on.) Similarly, find a pair b and c of integers > 105 for which qi = 10 for all
i . In both cases, confirm your results by using EuAlDem2. Quite clearly, the sequence
of qi could be anything. However, for most pairs b , c the qi follow a definite statistical
distribution. About 0.415 of them are = 1, about 0.170 of them are = 2, about 0.093
of them are = 3, and so on. More precisely, we expect that qi = k for a proportion of
approximately (

log(1 + 1/k)− log(1 + 1/(k + 1))
)
/ log 2

of the i . Gauss claimed to have proved this, but his proof (if he had one) is unknown. The
first known proof was given in 1928 by R. O. Kuz’min. Using modern tools, one finds this
result as an easy consequence of the ergodic theorem. Choose a pair of large integers b , c
at random, and use EuAlDem2 to generate the qi . How close to the expected distribution
are the qi ?

10. As is discussed on pp. 13–15 of NZM, each remainder ri generated by the Euclidean
Algorithm is a linear combination of the b and c that initiated the sequence. That is,
ri = xib+yic . These xi and yi are not uniquely determined. (For example, if we replace xi

by xi+c and at the same time replace yi by yi−b then the value of xib+yic is unchanged.)
However, one set of natural values for the xi and yi is given by the recursions

xi = xi−2 − qixi−1,

yi = yi−2 − qiyi−1.

Indeed, it is this same recursion,
ri = ri−2 − qiri−1

that generates the ri . These xi and yi are displayed by EuAlDem2. What do you note
about the signs of these numbers? About their absolute values? Can you prove that these
patterns hold in general? What values are taken on by xiyi−1 − xi−1yi ?

4 Computational Laboratories in Number Theory



11. The program GCDTab displays the greatest common divisors of pairs of integers.
After invoking this program, use the arrow keys to move away from the origin. Each
gcd displayed is calculated (by the Euclidean Algorithm, of course) and then immediately
written to the screen. Admire how quickly this is accomplished. What value occurs most
frequently? Enter b = 3300 and c = 2200 to move to a new location in the screen. Note
that there are two columns near the middle of the screen that consist entirely of 1’s. Use
the ↑ and ↓ keys to examine more entries in these columns. Why do these columns contain
so many 1’s? Where in these columns will one find larger entries?

12. In EuAlDem2, the quotients are determined by rounding down, qi = [ri−2/ri−1] .
In EuAlDem3, the qi are obtained by rounding to the nearest integer. Apply these two
programs to the same pairs b , c . How many steps are saved? Is there much in common
among the two sets of ri ? Try the pairs b , c that you found in 9. with all qi = 1 and all
qi = 10. What do you find?

13. For the programmer. Write a program in which b and c run independently from 1 to
some number N . For each pair, evaluate (b, c), say by appealing to the gcd function in the
NoThy unit. Count the number K of pairs for which (b, c) = 1. What is the proportion
K/N2 ? How close is it to 6/π2 ? How does the running time of this program depend on
N ? For any fixed g > 0, the density of pairs b , c , for which (b, c) = g is asymptotically
6/(πg)2 . You could write your program so as to track the incidence of other small values
of the gcd.

14. For the hopelessly addicted programmer. Construct a routine that evaluates j(b, c).
Use this in a program that chooses pairs b , c of large integers (≈ 1017 ) at random,
and tabulates the value of j(b, c). For 10,000 such pairs, say, how are the values of j
distributed? What is their mean? Max? Min? Standard deviation? For the theory behind
this, consult J. Dixon, The number of steps in the Euclidean Algorithm, J. Number Theory
2 (1970), 414–422. How close are your numerical values to the theoretical prediction?

15. For the truly ambitious. In addition to rounding to the nearest integer, the Euclidean
Algorithm may be enhanced by removing powers of 2 whenever possible. Your machine
knows b as a string of binary digits, so the power of 2 dividing b can be read as a block
of trailing 0’s. One may divide by 2 by right-shifting the binary expansion. This is much
faster than long division (or at least it should be). Suppose that 2j‖b and that 2k‖c .
Put b′ = b/2j , c′ = c/2k , and set m = min(j, k). Then (b, c) = 2m(b′, c′). Now use the
following identities, as appropriate:

i) (b, c) = (c, b) (use this to ensure that b ≥ c > 0),
ii) (b, c) = (b− c, c) (use this when b ≥ c > 0 and b and c are both odd),
iii) (b, c) = (b/2, c) (if b is even and c is odd),
iv) (b, 0) = b (if b > 0).

The point here is that if b and c are odd then b−c is even, so that iii) becomes applicable
after ii) has been applied. Division by 2 is accomplished by right-shifting the binary

Computational Laboratories in Number Theory 5



expansion. Thus the usual division, which is slow, is avoided. With gcd evaluated in
this way, write a program that calls gcd repeatedly, and keeps track of the elapsed time.
Compare these times with the times obtained similarly using the gcd provided by the
NoThy unit. Because of slow string manipulation, in Turbo Pascal, it may emerge that
your new—and complicated—version of gcd is in fact slower. It may be necessary to resort
to assembly language if a gain is to be realized.

6 Computational Laboratories in Number Theory



LABORATORY 2
Factorization and Prime Numbers

Programs Used: FacTab, Factor, GetNextP

The program FacTab produces a table of least prime divisors of odd numbers, up to
109 . The values are calculated by dividing small primes into the numbers in the desired
range, until the only numbers for which a least prime divisor has not been found are prime.
Let p be a given prime number. The least composite integer n such that p is the least
prime factor of n is n = p2 . (In this connection, recall Problem 24. on p. 30 of NZM.)
Thus if one is to prepare a table of least prime factors of integers in an interval [a, b] , then
it is useful to have on hand a table of all primes p ≤ b1/2 . In the case of FacTab, the
intervals considered are of the form [10N, 10N + 200] with N ≤ 108 . Since 31607 and
31627 are consecutive primes, and since

316072 < 109 + 200 < 316272,

it suffices to have a table of primes through the prime 31607. Such a table of primes may
be constructed as follows: Consider a sequence a1 , a2 , . . . , a31607 of 0’s and 1’s. Initially
we take a1 = 0, and ai = 1 for all i > 1. We operate on this sequence so that eventually
ai = 1 if i is prime, ai = 0 otherwise. Start with p = 2, and while p ≤ 173 perform the
following operations: Put j = p2 . This is the least composite integer composed entirely
of primes ≥ p . Put aj = 0. Replace j by j + p , and set aj = 0. Replace j by j + p .
Continue in this manner until j > 31607. By examining the numbers ap+1, ap+2, . . . , find
the least integer q such that q > p and aq = 1. Then q is the least prime number greater
than p . Replace p by q , and start over. This method of generating primes is known as the
Sieve of Eratosthenes. It suffices to sieve only to p = 173, since 173 is the largest prime
≤
√

31607. FacTab constructs a table of small primes in this way when the program is
first loaded, with one modification: Since the even numbers are immediately eliminated,
FacTab saves time and memory by applying the sieve only to the odd integers.

1. Use FacTab to view the least prime factors of the odd numbers in an interval. You will
note that the least prime factor of numbers of the form 10k + 5 display a certain pattern.
Describe this pattern, and prove that it persists.

2. Can you find any other patterns similar to the one noted above?

3. For 5 ≤ k ≤ 20, how many primes lie between ek and ek +100 ? How do these numbers
compare with 100/k ?

4. For several values of x and h (with h small compared with x), count the primes
between x and x + h , and compare the result with h/ log x .

5. How many primes lie between 20831330 and 20831530 ? By using PgUp and PgDn,
determine whether this is typical of similar intervals in this vicinity. For a report of a more

Computational Laboratories in Number Theory 7



extensive study of the gaps between primes, see D. Shanks, On Maximal Gaps between
Successive Primes, Math. Comp. 18 (1964), 646–651.

6. For how many integers n ≤ x is the least prime factor of n greater than 2? Greater
than 3? Than 5? Than 7? How do these numbers increase with x? Formulate a conjecture
concerning the asymptotic behavior. Can you prove your conjecture? (Theorem 8.8(e) and
Theorem 8.29 of NZM are relevant here.)

7. A prime number p is called a twin prime if p + 2 is also prime. Repeat Problem 3
above, but this time counting only twin primes. How do the counts compare with 100/k2 ?
Do you conjecture that there are infinitely many twin primes, or do you conjecture that
there are only finitely many?

The program Factor determines the canonical factorization of an integer n by trial
division. Suppose that prime factors < d have been found, and removed, leaving an integer
m yet to be factored. If m = 1 then we are done. If 1 < m < d2 then m is prime, and we
are done in this case also. Otherwise, we divide d into m . If d|m then d is prime, and we
repeatedly divide by d until d no longer divides the remaining number. Then we replace
d by d + 1 and repeat the process. To save time, after powers of 2 have been removed,
only odd d are considered. Further savings can be obtained by noting that after removing
powers of 2 and of 3 it suffices to consider d of the forms d = 6k−1, d = 6k +1. FacTab
takes this a step further: After powers of 2, 3, and 5 have been removed, only those d of
the eight forms 30k+1, 30k+7, 30k+11, 30k+13, 30k+17, 30k+19, 30k+23, 30k+29
are considered. Thus d is replaced by d + 30 after only 8 trial divisions. This method is
in principle slightly wasteful, because it would be enough to consider prime values of d ,
but in practice it seems to take longer to generate a table of primes. (Try it, if you like to
write programs.) Instead of generating a table of primes, one could construct a permanent
file listing primes, and then call the needed primes from that file, but this seems to take
still longer.

8. Use FacTab to find the largest prime < 10k for k = 1, 2, . . . , 9. Apply Factor to each
of these nine primes, and note the time required to perform the calculations. Is the time
roughly c

√
n ? What values of c do you observe?

9. Apply Factor to each of the numbers 1018 − k for k = 1, 2, . . . , 9. In some of these
cases, you will tire of waiting for a complete resolution. To interrupt the program, simply
press a key, and note how the program reports its partial results. (In laboratories 8 and
19 you will be introduced to programs that deal more quickly with numbers that resist
treatment by Factor.)

10. Apply factor to 20 randomly-chosen numbers ≈ 109 . Make a record of these numbers,
and note which ones are square-free. What proportion of them are square-free? How close
is this proportion to 6/π2 = 0.6079 . . . ? How many integers n ≤ x are not divisible by
4? How many are not divisible by 9? How many by neither 4 nor 9? The proportion of
n ≤ x for which 4 6 | n and 96 | n tends to a limit as x tends to infinity. What is this limit?

8 Computational Laboratories in Number Theory



Can you guess how this limit would change if we also require that 25 6 | n ? (See Theorems
8.25 and 8.29 of NZM.)

The program GetNextP yields the least prime p greater than a given number a ,
provided that a ≤ a ≤ 109 . For a in this range, GetNextP uses the same sieving procedure
as found in FacTab. For larger values of a , 109 < a ≤ 1018 , the program GetNextP locates
the least integer q > a that is likely to be prime. That is, the interval (a, q) contains
no prime number and q is “probably” prime (in the sense that it passes several strong
pseudoprime tests; this is discussed on pp. 77, 78 of NZM, and also in Laboratory 7). In
Laboratory 11 technique is introduced by means of which it is possible to prove that a
number q is prime, much more efficiently than would be done by trial division.

Note to the programmer: The function GetNextP is found in the library NoThy. To
use it in a Turbo Pascal program, declare the unit NoThy in the uses statement at the
beginning of the program. This function differs from the program GetNextP in that it is
restricted to x < 109 , where it gives a rigorously proved answer. See the Turbo Pascal
Programming Resources at the end of this manual for more details.

11. Use GetNextP to find the least prime p > x , for several x ≈ 108 . How are the
differences p − x distributed? What is their mean? If you like to program, you could
conduct a larger study, and a more detailed statistical analysis.

The asyptotic situation remains a matter of conjecture, but it is expected that as x
tends to infinity, the mean lies between (1− ε) log x and (1 + ε) log x . Also, for any fixed
c > 0, it is predicted that the proportion of integers x ≤ X such that p−x > c log x tends
to e−c as X tends to infinity.

12. Write a program that deletes from a given sequence of integers those that are divisible
by the square of a prime. In this way, count the number of square-free integers in various
short intervals, and also the number of square-free integers not exceeding 104 . A handy
list of small primes can be obtained by borrowing relevant code from the program FacTab.

In Theorem 8.25 of NZM it is shown that the number Q(x) of square-free integers
not exceeding x is cx + O(

√
x) where c = 6/π2 . (The O -notation is defined on p. 365

of NZM.) It is conjectured that the error term here is actually O(xθ) for any θ > 1/4.
Although such a strong upper bound for the magnitude of the error term has not yet been
proved, it is known that the error term does achieve the order of x1/4 infinitely often.
Does the numerical evidence generated by your program support the stronger conjecture?
Still less is known concerning the variation in the number of square-free numbers in short
intervals.

Computational Laboratories in Number Theory 9



10 Computational Laboratories in Number Theory



LABORATORY 3
Congruences

New Programs: CngArTab, Mult, MultDem1, MultDem2, MultDem3,
PowerTab, FctrlTab, PolySolv

1. The program CngArTab displays the addition and multiplication tables of congruence
aritmetic. After entering an initial modulus m , you may switch between the two tables
by pressing s. Reduced residue classes are displayed in white, to aid in distinguishing
them from non-reduced residue classes, in yellow. In the multiplication table, which rows
constitute a complete residue system (each residue once and only once)? Refer to Theorem
2.6 of NZM.

2. If two reduced residue classes are multiplied, is their product necessarily a reduced
residue class? Experiment, and recall Theorem 1.8 of NZM.

3. When viewing the multiplication table, the display can be restricted to the reduced
residue classes by pressing r. Try this with m = 15, for example. Do the numbers in a
given row of the table constitute a system of reduced residues? Refer again to Theorem
2.6 of NZM. Try this also with m = 91, and note the location of the gaps in the reduced
residues.

4. Take m = 35 in CngArTab. For which a (mod 35) does there exist an x such that
ax ≡ 1 (mod 35)? That is, in which rows of the multiplication table do you see a 1? Is
there any row containing more than one 1? (Numbers in the first column don’t count.)
Refer to Theorem 2.9 of NZM.

Suppose that 0 ≤ a < m and 0 ≤ b < m , and that we wish to find a number c
in this same interval such that c ≡ a + b (mod m). If a + b < m then this is easily
accomplished by taking c = a+ b . The only other possibility is m ≤ a+ b < 2m , in which
case it suffices to take c = a + b−m . Thus it is easy to compute the sum of two residue
classes. Multiplication may be approached similarly: We first form ab , and then apply the
Division Algorithm, so that ab = qm + r with 0 ≤ r < m . Then ab ≡ r (mod m), and
we are done. However, a computational problem arises if m is large, because ab may be
nearly as large as m2 . For example, our Turbo Pascal programs perform integer arithmetic
accurately only up to 1018 . For m < 109 we proceed as above, but for 109 < m ≤ 1018 we
have a challenge: Find r , 0 ≤ r < m , so that ab ≡ r (mod m), with using only numbers
in the interval [−1018, 1018] . One approach to this is sketched in Problem 21 at the end
of Section 2.4 of NZM. This procedure is displayed by the program MultDem1. It works
pretty well if m is not too large (say 109 < m ≤ 1012 ), but for really large m (those
close to the upper limit 1018 ), this procedure is slow. An alternative method, described
in MultDem2, is faster for 1012 < m ≤ 1018 . In practice we choose one or the other of
these methods, depending on the size of m . This is demonstrated in MultDem3. From

Computational Laboratories in Number Theory 11



the command line you can multiply residue classes by using the program Mult. Try typing
mult 2 3 5 [Enter]. Alternatively, type mult [Enter], and respond to the prompts.

5. Use the program PowerTab to investigate the following questions. For which values
of a (mod m) is the sequence a0 , a1 , a2 , . . . (mod m) eventually periodic? Purely
periodic? Try all values of a for several moduli (say m = 4, 5, 6, 7), and note the results.
Formulate conjectures concerning the general situation. How does the behavior for prime
m differ from composite m? Is the value of (a,m) relevant? For now you can assume
that PowerTab computes the powers of a (mod m) sequentially. Actually, this program
can skip forward to calculate an (mod m) quickly, without determining the intervening
powers. This involves an algorithm that will be discussed in laboratory 7.

6. The number of reduced residue classes (mod m) is called φ(m). (See pp. 50, 51
of NZM.) Determine the value of φ(91) by the following method: There are precisely
13 numbers a , 0 ≤ a < 91 such that 7|a . Similarly, there are precisely 7 numbers a ,
0 ≤ a < 91 for which 13|a , and precisely 1 number a , 0 ≤ a < 91 for which both
7|a and 13|a . Hence φ(91) = 91 − 13 − 7 + 1 = 72. By using CngArTab to view the
multiplication table (mod 91) with only reduced residues displayed, you can confirm that
this calculation is correct. More generally, if n = p1p2 where p1 and p2 are distinct primes,
then φ(n) = n−n/p1−n/p2 +1 = n(1− 1/p1)(1− 1/p2). This approach can be extended
to numbers with more prime factors, by means of the principle of Inclusion-Exclusion (see
pp. 209, 210 of NZM). An alternative method of developing a formula for φ(m), based on
the Chinese Remainder Theorem, is found on p. 69 of NZM. Use PowerTab to view the
powers of b , reduced modulo 91. Note that b72 ≡ 1 (mod 91) whenever (b, 91) = 1, as
predicted by Euler’s Congruence (Theorem 2.8 of NZM). Is there a smaller exponent with
this same property?

7. The program FctrlTab generates a table of the numbers k! (mod m). Use FctrlTab to
view the factorials modulo 345345. What is the least k such that k! ≡ 0 (mod 345345)?
Is it necessarily the case that (k, 345345) > 1? Use Factor to determine the factorizations
of k and of 345345. Use FctrlTab to view the factorials (mod p) for several prime
numbers p . Is there any pattern exhibited by (p− 1)! (mod p)? By (p− 2)! (mod p)?
By (p − 3)! (mod p)? Formulate conjectures. Can you prove that each one of these
conjectures implies the others? See Wilson’s Theorem (Theorem 2.11 of NZM).

8. For each integer m let k(m) denote the least positive integer k such that k! ≡ 0
(mod m). Clearly k(p) = p if p is prime. If m is composite then k(m) is smaller. How
much smaller? Is it usually small? Is it usually large? Does it oscillate a lot? Use FctrlTab
to determine k(m) for several values of m , and interpret your findings.

9. The program PolySolv allows you to define a polynomial f(x), and then find the roots
of the congruence f(x) ≡ 0 (mod m). The program runs rather slowly when m is large,
since f(a) is evaluated (mod m) for every a , 0 ≤ a < m . Use PolySolv to find the roots of
x2 ≡ 1 (mod p) for several small primes p , and note that the results conform to Lemma
2.10 of NZM.

12 Computational Laboratories in Number Theory



LABORATORY 4
Sums of Two Squares

New Programs: SumsPwrs, Wrg1Tab, WrgStTab

1. Apply the program PolySolv to the polynomial f(x) = x2 +1. Take the modulus to be
a prime number ≡ 3 (mod 4), and note that the congruence has no solution, as proved
in Theorem 2.12 of NZM. Take p to be a prime ≡ 1 (mod 4). How many solutions are
there? How are they related to each other? Try several different primes ≡ 1 (mod 4).
Is the number of solutions always the same? Form a conjecture. (This conjecture can be
proved by applying Corollary 2.27, or by taking d = 4 in Corollary 2.30 of NZM.) How
many solutions are there when p = 2? Let N(m) denote the number of solutions of the
congruence x2 + 1 ≡ 0 (mod m). Use PolySolv to determine the value of N(2j), N(3j),
and N(5j) for several small values of j . Does a pattern emerge?

2. The program SumsPwrs will find all representations of n as a sum of s k -th powers,
by exhaustive searching. If s is large compared with k then the time required for this
increases very rapidly with n . Type sumspwrs 1105 2 2 [Enter], or type sumspwrs
[Enter] and respond to the prompts. Let R(n) denote the number of representations of
n as a sum of two squares. That is, the number of ordered pairs (x, y) of integers such
that x2 + y2 = n . (Note that x and/or y may be negative.) Thus from SumsPwrs we
find that R(1105) = 32. A representation n = x2 + y2 is called proper if (x, y) = 1.
Let r(n) denote the number of proper representations of n . Using Factor, PolySolv, and
SumsPwrs, determine entries for the table below:

n Factorization R(n) r(n) N(n)

5

13

17

65

91

1105

The functions N(n) and r(n) are closely related. Can you spot the connection? (These
functions are discussed in §3.6 of NZM, as an application of the theory of binary quadratic
forms.) Theorem 2.15 of NZM asserts that one can determine whether n is a sum of two
squares by inspecting the canonical factorization of n . Is your data above consistent with
this description?

Computational Laboratories in Number Theory 13



3. Choose a prime number p ≡ 1 (mod 4), and set x = (p−1
2 )! . Use FctrlTab to

find the value of x (mod p). Then use Mult to confirm that x2 ≡ −1 (mod p). This
is computationally slow when p is large, because of the large number of multiplications
required to evaluate the factorial. A much faster method for finding solutions of this
congruence is found in Problem 2. of Laboratory 14 (and at the top of p. 111 of NZM).
Once the congruence has been solved, the representation of p as a sum of two squares can
be found quickly, either by using the theory of binary quadratic forms (see Example 3 in
§3.6 of NZM, and also the discussion prior to Problem 3. in Laboratory 16), or by using
continued fractions (as described in Problem 6. at the end of §7.3 of NZM).

4. Let f(x) = x2 +1. If p ≡ 1 (mod 4) then f has exactly one root x for which 0 < x <
p/2. Let p run over a collection of such primes. How are the numbers 2x/p distributed in
the interval (0, 1)? It has long been conjectured that these quantities approach uniform
distribution as p runs over all primes ≡ 1 (mod 4), p ≤ x , with x tending to infinity. One
could write a program to test how rapidly the distribution approaches uniformity. This
conjecture was finally proved in 1994 (see W. Duke, J. B. Friedlander, and H. Iwaniec,
Equidistribution of roots of a quadratic congruence to prime moduli, Annals of Math., to
appear). The proof is quite sophisticated, as it depends on the spectral theory of modular
forms.

5. Let x = (p−1
2 )! , as in 2. above. What is x (mod p), if p ≡ 3 (mod 4)? Use

FctrlTab to investigate, and recall Problem 18 on p. 57 of NZM. Of the two possibilities
that occur here, it seems not to be known that both occur for infinitely many p ≡ 3
(mod 4), although one might conjecture that each occurs asymptotically 1/2 the time.
One could write a program to generate statistical data. D. H. Lehmer showed that the
two possibilities are connected to whether h(−p) ≡ 1 (mod 4) or ≡ 3 (mod 4), where
h(−p) is a class number of binary quadratic forms, as defined in Problem 13. on p. 163 of
NZM.

In view of the definition of R(n), it is clear that the sum
∑

n≤x R(n) is equal to the
number of lattice points (x, y) in the disk of radius

√
x centered at the origin. As the

number N of lattice points within a convex body C differs from the area A of that body
by an amount that is at most proportional to the perimeter P of that body. That is,
N = A + O(P ). Applying this to the disk, we deduce that∑

n≤x

R(n) = πx + O(
√

x). (1)

Let B(x) denote the number of integers n ≤ x that can be expressed as a sum of two
squares. One might think that the relation above suggests that B(x) ∼ cx as x tends to
infinity (i.e., the sums of two squares form a set of positive asymptotic density). However,
Landau proved that

B(x) ∼ bx√
log x

(2)

as x tends to infinity. Here b is a certain positive constant. The apparent discrepancy
between these results is reconciled by recognizing that R(n) is usually 0, but if R(n) > 0

14 Computational Laboratories in Number Theory



then R(n) is likely to be large. The tools required to prove (2) are similar to those used in
the analytic proof of the Prime Number Theorem: Dirichlet series, Euler products, contour
integration, etc. For an exposition of this, see W. J. LeVeque, Topics in Number Theory,
vol. II, Addison-Wesley, Reading, 1956, pp. 257–263.

6. A table of R(n) is provided by taking s = k = 2 in the program Wrg2Tab. By
examining larger values of n you will see that R(n) is usually 0, but that positive values
are often large. The program WrgStTab generates a table of B(x), B(x)/x , B(x+h)−B(x)
and (B(x + h)−B(x))/h . Using this data, what value of b in (2) is suggested?

It is known that the limiting approximation in (2) is approached only slowly. A more
accurate approximation to B(x) could be constructed by introducing a second term on the
right hand side of (2), of the form b1x/(log x)3/2 . Here b1 is some appropriate constant.
Still greater accuracy would be achieved by introducing a term b2x/(log x)5/2 , and so on.
This is discussed by D. Shanks, The second-order term in the asymptotic expansion of
B(x) , Math. Comp. 85 (1964), 75–86. It turns out that the constant b in (2) is

b =
(

2
∏

q≡3(4)

(
1− 1

q2

))−1/2

= 0.764223654 . . .

where the product is taken over all prime numbers q ≡ 3 (mod 4).

Computational Laboratories in Number Theory 15



16 Computational Laboratories in Number Theory



LABORATORY 5
Solutions of Congruences & Binomial Coefficients

New Program: PascalsT

The program PolySolv allows you to specify a polynomial f with integral coefficients, and
a modulus m , and then it evaluates f(a) (mod m) for each a , 0 ≤ a < m . On the
screen it displays the residue classes a for which f(a) ≡ 0 (mod m), up to the first 100
of them. If there are more than 100 such a then only the first 100 are displayed, but
the program still reports the total number Nf (m) of roots. Since the running time of this
program is proportional to m , the program will restrict you to m < 106 .

1. Use PolySolv to find all roots of 7x ≡ 1 (mod 91); all solutions of 7x ≡ 35 (mod 91);
all solutions of 2x ≡ 1 (mod 101). Note conformity with Theorem 2.17 of NZM.

In the next three problems, you are asked to gather data concerning the number of
roots of a polynomial f(x) ≡ 0 (mod p), for various f and p , and then to formulate a
conjecture. Do not be disturbed if your numerical evidence is too meager to be compelling.
Each polynomial f has a discriminant, denoted D(f), and defined on p. 487 of NZM.
Prime factors of the discriminant are apt to be exceptional, and may not obey the general
pattern.

2. Let f(x) = x3 + x + 1, with discriminant D(f) = −31. Using PolySolv, for each
prime number p < 100 determine the value of Nf (p). What is the biggest value attained?
What values are attained, and with what frequencies? What is the average of the values
calculated? Formulate conjectures regarding the general situation.

3. Let g(x) = x3 + x2 − 2x − 1, with discriminant D(g) = 49. Using PolySolv, for each
prime number p < 100 determine the value of Ng(p). What is the biggest value attained?
What values are attained, and with what frequencies? What is the average of the values
calculated? Formulate a conjecture regarding the general situation.

4. Let h(x) = x2 + x + 1, with discriminant D(h) = −3. Using PolySolv, for each
prime number p < 100 determine the value of Nh(p). What is the biggest value attained?
What values are attained, and with what frequencies? What is the average of the values
calculated? Formulate a conjecture regarding the general situation.

The situation touched on in Problems 2–4 above is quite complicated. Suppose that
f(x) is a polynomial of degree d with integral coefficients. Then 0 ≤ Nf (p) ≤ d ; see
Corollary 2.27 in NZM. The three polynomials considered above are irreducible (over the
field Q of rational numbers). For such polynomials, additional patterns emerge in the
statistics of the Nf (p). For each k , 0 ≤ k ≤ d , the primes p for which Nf (p) = k have a
certain relative density dk . That is, the limit

dk = lim
x→∞

1
π(x)

∑
p≤x

Nf (p)=k

1

Computational Laboratories in Number Theory 17



exists. These densities are determined by the Chebotarev Density Theorem in terms of
the Galois group of f . Thus the densities depend on the particular polynomial, although
only finitely many configurations can arise. In the case of the polynomial of Problem 2,
the Galois group is S3 , and the densities are d0 = 1/3, d1 = 1/2, d2 = 0, d3 = 1/6.
In Problem 3, the Galois group is C3 , and the densities are d0 = 2/3, d1 = d2 = 0,
d3 = 1/3. (For this polynomial, Nf (p) = 1 if and only if p = 7.) In Problem 4 the Galois
group is C2 , and the densities are d0 = 1/2, d1 = 0, d2 = 1/2, but the situation is more
elementary, since by quadratic reciprocity we find that Nf (p) = 2 if p ≡ 1 (mod 3), and
Nf (p) = 0 if p ≡ 2 (mod 3). The densities then follow by the prime number theorem for
arithmetic progressions.

Concerning the densities dk , it is obvious that
∑d

k=1 dk = 1, and it is easy to show
that dd−1 = 0. Not so obviously, the dk also satisfy the relation

∑d
k=1 kdk = 1. That is,

lim
x→∞

1
π(x)

∑
p≤x

Nf (p) = 1 (1)

for any irreducible polynomial with integral coefficients. This is a consequence of the prime
ideal theorem (which is a natural extension of the prime number theorem to algebraic
number fields). For a more detailed account of how the densities dk are calculated, see H.
Heilbronn, Zeta-functions and L-functions, Algebraic Number Theory (Brighton, 1965),
Thompson, Washington, 1967, pp. 204–230, especially pp. 227–229.

5. For any two polynomials f(x) and g(x), one can define their resultant , R(f, g). We
skip the definition and fundamental theorems concerning this quantity, and mention just
three useful properties: (i) If f and g have integral coefficients, then R(f, g) is an integer.
(ii) R(f, g) = 0 if and only if f and g have a common factor (i.e., and common poly-
nomial divisor of degree > 0). (iii) There exist polynomials u(x) and v(x) with integral
coefficients such that

f(x)u(x) + g(x)v(x) = R(f, g).

Suppose that f and g have a common root (mod p). That is, there is an a (mod p)
such that both f(a) ≡ 0 (mod p) and g(a) ≡ 0 (mod p). On setting x = a in the
identity above, we see that the left hand side is divisible by p , and hence that p|R(f, g).
Thus if p 6 | R(f, g) then f and g have no common root, and it follows that Nfg(p) =
Nf (p) + Ng(p). Let f be as in Problem 2, and g as in Problem 3, so that f(x)g(x) =
x6 +x5−x4 +x3−x2−3x−1. It can be shown that R(f, g) = 13 in this case. By applying
PolySolv, confirm that f and g have a common root when p = 13. Without performing
any additional calculation, list the roots of f(x)g(x) (mod 13). Apply PolySolv to fg , to
confirm your guess.

6. Apply PolySolv with f(x) = x1732 − 1, m = 1733. Having determined the number of
roots of f , can you deduce that m is prime? Is this a time-effective method of proving
primality? Apply PolySolv with f(x) = x1738 − 1, m = 1739. After determining the
number of roots of f , can you deduce that m is composite? (Recall Euler’s Congruence,
Theorem 2.8 of NZM.) Is this a time-effective method of proving compositeness?

18 Computational Laboratories in Number Theory



7. Let p = 101, say, and consider f of the form f(x) = x3 + ax2 + bx + c . For various
randomly-selected triples a , b , c use PolySolv to determine the value of Nf (101). For-
mulate a conjecture regarding the average number of solutions of a polynomial congruence
modulo a prime p , when p is fixed and the polynomial runs over all monic polynomials of
some given degree. (A polynomial is monic if its leading coefficient is 1.) Can you prove
your conjecture?

8. Let f be defined as in Problem 3 above. Suppose that p is a prime such that Nf (p) = 2,
and that q is a prime such that Nf (q) = 3. Use PolySolv to determine the value of Nf (pq).
Try some further examples of this kind. Formulate a conjecture concerning the relationship
between Nf (m), Nf (n), and Nf (mn) when (m,n) = 1. (This conjecture is established as
Theorem 2.20 in NZM, as an application of the Chinese Remainder Theorem.)

9. Suppose that p 6 | x . Explain why x(p−1)/2 ≡ ±1 (mod p). For how many x does
the + sign occur? Take f(x) = x(p−1)/2 − 1 in PolySolv. Try this for several values of
p . Formulate a conjecture. (This conjecture can be derived as an application of the more
general Theorem 2.37 of NZM.)

10. The program PascalsT displays the entries of Pascal’s Triangle (i.e., binomial coeffi-
cients), reduced (mod m). Start with m = 2. The pattern created by rows 0–3 is repeated
twice in rows 4–7, with an inverted triangle of 0’s between. Does this generalize? How
would you express this in terms of equations?

11. For 0 ≤ n ≤ 15, count the number of odd entries in the nth row of Pascal’s triangle.
(Take m = 2 in PascalsT.) The totals that arise in this way form a special class of integers.
Describe.

12. When n is written in binary, the number of 1’s in the expansion is called the binary
weight of n , and is denoted w(n). That is, if n = 2i1 + 2i2 + · · ·+ 2ik with 0 ≤ i1 < i2 <
· · · ik then w(n) = k . Compute w(n) for 0 ≤ n ≤ 15. Note the relation between these
values, and the totals computed in the preceding problem. Form a conjecture. (Problem
16 at the end of §2.2 of NZM is relevant here.)

13. Let p be a prime number. What is the least n such that p|
(

n
k

)
for all k in the range

0 < k < n? (Take m = p in PascalsT, and look for 0’s.) What is the second such n? The
third? (Problem 14 at the end of §2.2 of NZM is relevant here.)

14. For what k , 0 ≤ k ≤ 15, is it true that 3 6 |
(

15
k

)
? For what k , 0 ≤ k ≤ 15, is it true

that 56 |
(

15
k

)
? Does this suggest something?

15. Let p be a prime number. Describe all the patterns that you can find in the sequence
of residues

(
n
p

)
(mod p2).

Computational Laboratories in Number Theory 19



20 Computational Laboratories in Number Theory



LABORATORY 6
Linear Congruences

& The Chinese Remainder Theorem

New Progrems: LinCon, LnCnDem, IntAPTab, CRT, CRTDem, Phi

The program LinCon applies the extended Euclidean algorithm to find the complete solu-
tion set of the linear congruence ax ≡ b (mod m). You can type lincon a b m [Enter],
or simply type lincon [Enter] and follow the prompts. Try it both ways, now. Note
that the conclusions reached are in conformity with Theorem 2.17 of NZM.

1. The computational procedure followed by LinCon is sketched at the end of §2.2 of
NZM, and is described in greater detail on the first three pages of Chapter 5. The steps
involved are displayed by the program LnCnDem. Type lncndem 17 1 101 [Enter],
and follow the explanations given. Alternatively, type lncndem [Enter], and provide the
input values as prompted. Apply LnCnDem with a = 7, b = 13, m = 91. Also with
a = 5, b = 155, m = 345.

2. You now have two methods for finding solutions of linear congruences. You can
use either (i) LinCon or (ii) PolySolv. Try both methods on the congruence 7x ≡ 1
(mod 1234). Which method takes longer to run? Estimate the running time for the two
methods as a function of m . Which method is asymptotically faster? (Ignore the time it
takes to supply the input information to the programs.)

3. Let m and n be given, and put g = (m,n). The intersection of an arithmetic progres-
sion a (mod m) with an arithmetic progression b (mod n) is an arithmetic progression
(mod [m,n]) if a ≡ b (mod g), and is otherwise empty. (Recall Problem 20. at the end
of §2.3 of NZM.) The program IntAPTab presents these intersections in a manner rem-
iniscent of the table on p. 68 of NZM. Rows are indexed by residues a (mod m), and
columns by b (mod n). Type intaptab [Enter], and then take m = 5, n = 8. Note
that in the body of the table, each of the numbers 0, . . . , 39 occurs exactly once. That
is, the simultaneous congruences x ≡ a (mod 5), x ≡ b (mod 8) are equivalent to the
single congruence x ≡ c (mod 4)0, for some suitable value of c . The more general asser-
tion that this is true whenever (m,n) = 1 is known as the Chinese Remainder Theorem
(Theorem 2.18 of NZM). Take m = 101, n = 103 in IntAPTab, and take a stroll around
the table. There are now so many entries that it is no easy to see, by inspection, that each
number 0, . . . , 10402 occurs exactly once in the body of the table. Now take m = 102,
n = 104 in IntAPTab. What proportion of the entries are blank? Why? This phenomenon
becomes more pronounced when (m,n) is large. Try taking m = 25, n = 35.

The program CRT (meaning “Chinese Remainder Theorem”) determines the inter-
section of two given arithmetic progressions. For example, the numbers x such that
both x ≡ 3 (mod 4) and x ≡ 2 (mod 5) are precisely the numbers for which x ≡ 7

Computational Laboratories in Number Theory 21



(mod 20). Type crt 3 4 2 5 [Enter], and watch the results. On the other hand, there
are no x for which both x ≡ 1 (mod 12) and x ≡ 19 (mod 28). To see why this is so,
type crt 1 12 19 28 [enter].

4. The program CRT uses LinCon to find the intersection of two arithmetic progressions,
in the manner of the Second Solution to Example 3, on p. 67 of NZM. The program
CRTDem demonstrates how this is done. Type crtdem 3 4 2 5 [Enter], and watch the
response. Try also crtdem 1 12 19 28 [Enter].

5. By repeated use of CRT, find a number x such that 0 < x < 109 and none of
x , x + 1, . . . , x + 6 is squarefree. Thus we have a gap of length at least 8 between
consecutive squarefree numbers. (Hint: What if x ≡ 0 (mod 4), x ≡ −1 (mod 9),
x ≡ −2 (mod 25), x ≡ −3 (mod 49), x ≡ −4 (mod 121), x ≡ −5 (mod 169),
x ≡ −6 (mod 289).) Apply the program Factor to each of the numbers x , x + 1, . . . ,
x + 6 to verify your results. Are x− 1 and x + 7 both squarefree? (This construction can
be extended—recall Problem 18 at the end of §2.3 of NZM.)

6. Take m = 15, n = 13 in IntAPTab. Note that an entry in the body of the table is
printed in White if and only both the column and row labels of that entry are printed
in White. More generally, if (m,n) = 1, x ≡ a (mod m), and x ≡ b (mod n), then
(c,mn) = 1 if and only if (a,m) = 1 and (b, n) = 1. (This is argued in the proof of
Theorem 2.19, by using Theorems 1.8 and 2.4.) Hence the number of reduced residues
(mod mn) is the number of reduced residues (mod m) times the number of reduced
residues modn . That is, φ(mn) = φ(m)φ(n) whenever (m,n) = 1. Since it is easy to see
that φ(pα) = pα − pα−1 = pα(1− 1/p), we deduce that

φ(n) =
∏

pα‖n

(
pα − pα−1

)
= n

∏
p|n

(
1− 1

p

)
.

Thus we can calculate φ(n) easily, once the factorization of n has been determined. The
program Phi proceeds in this way: First the argument is factored, and then the above
formula is used. Try typing phi 42. You can confirm this answer by taking m = 42 in
CngArTab, and viewing the multiplication table with only the reduced residues displayed.

7. By using PolySolv, find two distinct residue classes x1 and x2 modulo 31 so that
x3 +x+1 ≡ 0 (mod 31). Similarly, find three distinct residue classes y1 , y2 , y3 modulo
47 so that x3 + x + 1 ≡ 0 (mod 47). By using CRT, find six residue classes u modulo
31 · 47 = 1457 so that u ≡ xi (mod 31) and u ≡ yj (mod 47), i = 1, 2, j = 1, 2, 3.
Apply PolySolv with f(x) = x3 + x + 1, m = 1457. Interpret your findings. Note the
conformity of this with Theorem 2.20 in NZM.

8. Recall that the only solutions of x2 ≡ 1 (mod p) are x ≡ ±1 (mod p). (See Lemma
2.10 of NZM.) Given that 4757 = 67 · 71, use the program CRT to find four roots of
the congruence x2 ≡ 1 (mod 4757). Verify your results by using PolySolv. When m is
composite you now have two methods for locating all the roots of a polynomial congruence

22 Computational Laboratories in Number Theory



f(x) ≡ 0 (mod m). You can (i) apply PolySolv directly to the modulus m , or (ii) factor
m into primepowers, apply PolySolv to each of these primepowers, and then use CRT to
combine these solutions to construct the solutions modulo m . Estimate the running time
of these two approaches. Which one is faster for a typical large composite number? (Ignore
the time it would take to input the arguments.)

Computational Laboratories in Number Theory 23



24 Computational Laboratories in Number Theory



LABORATORY 7
Powering Algorithms & Primality Testing

New Programs: PwrDem1a, DwrDem1b, PwrDem2, Power, SPsPDem, SPsP

The number ak (mod m) can be determined by k − 1 multiplications of residue classes,
but this is slow if k is large. There is a much faster way: The values of a , a2 , a4 , a8 , . . . ,
a2i

, . . . , (mod m) can be determined, by repeated squaring, in only i multiplications.
The binary expansion of k provides a representation of k as a sum of powers of 2, and
hence ak is a product of an appropriate collection of the numbers a2i

. For example,
13 = 23 + 22 + 20 , and hence a13 = a23 · a22 · a20

. The exact number of multiplications
required by this method varies irregularly with k , but it never exceeds 2 log2 k . The binary
expansion of k can be built from the bottom up, as demonstrated in programs PwrDem1a,
PwrDem1b, or from the top down, as demonstrated in PwrDem2. The former of these two
methods is discussed on pages 76, 77 of §2.4 of NZM.

1. Apply the programs PwrDem1a, PwrDem1b, DwrDem2 to several values of a , m until
the process is clear to you. Apply PwrDem1b and PwrDem2 to the same k . How do the
number of multiplications compare?

2. If k has binary expansion k = 2i1 + 2i2 + · · · + 2ir with i1 < i2 < · · · < ir , then
our powering algorithm requires ir + r − 1 multiplications to calculate ak . In particular,
it takes 6 multiplications to calculate a15 . Show that a15 can be obtained with only 5
multiplications.

The program Power evaluates ak (mod m). You may type power a k m [Enter],
or else simply type power [Enter], and respond to the prompts. Try it both ways, now.

3. Use the program Power to evaluate 2m−1 (mod m) where m = (1017 − 1)/9 =
11111111111111111. Assuming Fermat’s congruence, (Theorem 2.7 of NZM), this provides
a quick (but indirect) proof that 11111111111111111 is composite. Apply the program
Factor to 11111111111111111, and note how long it runs. With large numbers m (of
hundreds of digits), it is often the case that a quick proof that m is composite can be
given, even though we know of no way to obtain the factors of m within a reasonable
amount of time.

4. Is 91 prime? Evaluate 290 (mod 91). Is 341 prime? Evaluate 2340 (mod 341). Now
evaluate 3340 (mod 341). What do you conclude?

5. We have no quick method to find k! (mod m) akin to our quick method for calculating
powers. There are a few special cases (such as (p−1)! (mod p)), but in general the fastest
method known involves simply performing the k − 1 multiplications. If a quick method
could be found, then it would have important applications (to factoring, for example).
Suppose that you are in possession of a quick method for calculating

(
2k
k

)
(mod m).

Computational Laboratories in Number Theory 25



Explain how this could be used to provide a quick method for calculating k! (mod m).
Suppose you have a quick method for calculating k! (mod m). Explain how this could
be used to provide a quick method for factoring m .

If 0 < a < m and am−1 6≡ 1 (mod m) then m is composite. Since it is easy to
calculate powers modulo m , this provides a quick proof that m is composite—when it
works. Unfortunately, the converse is false, but the counterexamples seem to be rare, so
we call m a probable prime base a if m is odd and am−1 ≡ 1 (mod m). If m is a
probable prime base a but is nevertheless composite, then we call m a pseudoprime base
a , or, briefly, m is a PSP(a). If m is found to be a probable prime base 2, then we
might try base 3, and so on, but there exist composite m that are probable primes to
every base a for which (a,m) = 1. To see how this might happen, suppose that m is a
composite squarefree number with the peculiar property that (p − 1)|(m − 1) for every
prime number p dividing m . (The least such m is 561.) Suppose that (a,m) = 1. If
p|m then (a, p) = 1, and hence ap−1 ≡ 1 (mod p). Since (p− 1)|(m− 1), it follows that
am−1 ≡ 1 (mod p). Since this congruence holds for every p dividing m , it holds modulo
the product of all the primes dividing m . But we have assumed that m is squarefree;
hence am−1 ≡ 1 (mod m). An odd composite number such that am−1 ≡ 1 (mod m)
whenever (a,m) = 1 is called an absolute pseudoprime, or Carmichael number . The least
Carmichael number is 561; indeed, it can be shown that if m is a Carmichael number then
m is of the form we considered: m is squarefree and (p−1)|(m−1) whenever p|m . (This
is called Korselt’s criterion; see Problems 25–27 at the end of §2.8 of NZM.) It is not hard
to show that there exist infinitely many pseudoprimes to any given base (see Problem 19
at the end of §2.4 of NZM), and it is easy to construct numerical examples of Carmichael
numbers and to give arguments that suggest that Carmichael numbers form a fairly rich
subset of the integers (by methods akin to the construction of Problem 20 of §2.8 of NZM).
(If you query the Math Sci database by typing k=Carmichael.ti. [Enter], which means
keyword “Carmichael” in the title field, then you obtain a list of papers in which Carmichael
numbers are discussed in one way or another.) In particular, P. Erdős (On pseudoprimes
and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201–206) formulated a heuristic
argument that suggests that the number C(x) of Carmichael numbers not exceeding x is
larger than x1−ε for all sufficiently large x . Although Erdős’s conjecture is presumably
true, it seems that the ε tends to 0 slowly, since numerical studies have revealed that
C(1010) = 1547, and that C(1015) = 105212. Just recently it was finally proved that
there do indeed exist infinitely many Carmichael numbers. W. R. Alford, A. Granville,
and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 1994,
to appear, showed that C(x) > x2/7 for all sufficiently large x .

Since the pseudoprime test fails to establish the compositeness of some composite
numbers, we consider a slightly more elaborate test, which, however, involves no more
calculation than before. If m is odd, we repeatedly divide 2 into m− 1, until we obtain
a representation m − 1 = 2r · d with d odd. Suppose that a 6≡ 0 (mod m). Com-
pute ad (mod m). Next, we repeatedly square, forming the sequence a2d , a4d , . . . ,
a(m−1)/2 (mod m). Let x denote this last residue class computed. If x2 6≡ 1 (mod m)
then am−1 6≡ 1 (mod m), and hence m is composite, by Fermat’s congruence. Suppose
now that x2 ≡ 1 (mod m). If x 6≡ ±1 (mod m) then m is composite by virtue of

26 Computational Laboratories in Number Theory



Lemma 2.10 of NZM. More generally, if in the sequence of powers computed we find an
entry x 6≡ ±1 (mod m) followed by an entry 1, then x2 ≡ 1 (mod m), and hence m
is composite. This test is more stringent than the previous one; if it is inconclusive then
we call m a strong probable prime base a . If in addition m is composite then we call m
a strong pseudoprime base a , or m is an SPSP(a). In practice, we abandon the repeated
squaring if a value ≡ ±1 (mod m) is encountered, since the conclusion is already clear.
The exact sequence of steps performed is exhibited on p. 78 of NZM. It is known that if
m is composite then there are at least m/4 bases a such that the compositeness of m is
demonstrated by applying this strong pseudoprime test base a . Thus if m survives this
test for several values of a , we can be reasonably confident that m is prime—such an m
might be called an “industrial grade prime”.

6. By means of lengthy calculation (see C. Pomerance, J. L. Selfridge, and S. S. Wagstaff
Jr., The pseudoprimes to 25 · 109 , Math. Comp. 35 (1980), 1003–1026), it has been found
that there are only 13 odd integers m < 25 · 109 that are SPSP(a) for a = 2, a = 3,
and a = 5. Of these, only one, namely m = 3215031751 is also a SPSP(7). Apply the
strong pseudoprime test to this m with bases a = 2, 3, 5, 7, and 11. For example, try
typing spspdem 3215031751 2 [Enter], or simply type spspdem [Enter] and follow the
prompts.

8. By appropriate use of the program Power, show that 4369 and 4371 are both probable
primes base 2. Are either of these numbers strong probable primes base 2? Are either of
these numbers prime? (Use the program SPsP to answer this question, not Factor.) Are
either of these numbers Carmichael numbers?

9. Factor 561, verify that 561 is squarefree, and that (p−1)|560 for every prime p dividing
561. Hence deduce that 561 is a Carmichael number.

10. If m is a PSP(a) but not a SPSP(a) then the strong pseudoprime test locates a
number x such that x 6≡ ±1 (mod m), but x2 ≡ 1 (mod m). In such a situation not
only is it established that m is composite, but also a proper divisor of m can be exhibited,
namely (x− 1,m). Apply the program SPsPDem to m = 561 with a = 2.

11. What does the program SPsP do if you enter m on the command line, but omit a?
Type spsp 91 [Enter].

12. Numerical evidence suggests that most pseudoprimes are squarefree. To explain this,
show that if m is a PSP(a), and if p is a prime such that p2|m , then

ap−1 ≡ 1 (mod p2). (1)

(Hint: am ≡ a (mod m), and hence ap−1 ≡ (am)p−1 ≡ am(p−1) (mod m). But φ(p2)
divides m(p − 1).) Conversely, show that if p is a prime such that (1) holds then p2 is
a PSP(a). Only a few primes have been found for which 2p−1 ≡ 1 (mod p2), although
it is believed that infinitely many exist. The least such prime is 1093. Use the program

Computational Laboratories in Number Theory 27



Factor to verify that 1093 is prime, and the program Power to verify that 21092 ≡ 1
(mod 10932). Is 1093 a SPSP(2)?

For an extensive account of primality testing see H. C. Williams, Primality testing on
a computer, Ars Comb. 5 (1978), 127–185.

28 Computational Laboratories in Number Theory



LABORATORY 8
Factoring Strategies

New Programs: RhoDem, Rho, P–1Dem, P–1

We know that trial division yields a rigorous proof of the factorization of n in at most
O(
√

n) steps. This is slow when n is large, so we now consider methods that are faster
for large n . Our object here is not to present state-of-the-art factoring, but only to drive
home the point that it is possible to construct factoring strategies that are much faster
than trial division.

1. Trial division takes ≈
√

n steps if n is prime or if n is the product of two primes,
n = p1p2 with p1 ≈ p2 ≈

√
n . However these are the worst cases, and trial division

is much quicker for many numbers. To see why this is so, suppose that n is composite
and that p1 < p2 < . . . < pk are the distinct primes dividing n . Explain why only
O(log n) + O(pk−1) + O(

√
pk) trial divisions are required to factor n . Trial division is

unlikely to yield the complete factorization of a large n in a reasonable amount of time,
but nevertheless one should always try divisors through 100000 or so, when asked to factor
a number n of unknown multiplicative structure.

2. Although alternative factoring strategies can be traced as far back as Fermat and
Gauss, we begin with a simple method of comparitively recent origin, namely Pollard’s Rho
Method, proposed in 1975 by J. M. Pollard. (Why it shuld be called “Rho” is explained on
p. 81 of NZM.) Suppose that a prime number p has been chosen. Let u0 = 1, and for i > 0
let the numbers ui be determined by the relations ui ≡ u2

i−1 + c (mod p), 0 ≤ ui < p .
Here c is some constant. We usually start with c = 1, but other valuse of c are sometimes
handy, as will become clear later. The sequence ui may have a non-periodic initial segment,
but once a value is repeated (as must eventually happen), the sequence becomes periodic.
The program RhoDem will assist you in determining when this first repetition occurs.
Type rhodem [Enter], and in response to the query “Use cycle-detecting algorithm?”
respond by typing n. In response to the prompts enter p = 89, and set c = 1. In the
sequence of ui displayed, you will see that u2 = u16 = 2, but that u1 6= u15 . Thus the first
repeat is at u16 , and the period of the repetitions is 14. In general, let r(p) be the least
index i such that the value ui repeats a value found previously, and let l(p) denote the
least period of the repetitions. Thus r(89) = 16 and l(89) = 14. Repeat this calculation
for the prime p = 29, and thus determine the values of r(29) and l(29).

By the pigeon-hole principle we see that r(p) ≤ p + 1, but the “Birthday Paradox”
leads us to expect that r(p) ≈ √

p for most primes, and for most choices of c . (See
Lemma 2.21 in NZM, and the discussion following.)

3. In the examples above it is easy to spot the first repetition visually, but this task
becomes rapidly more difficult when p is a little larger. Repeat the steps above with

Computational Laboratories in Number Theory 29



p = 3463. Touch a key to scroll down through the table, and as you go, note the following
four values:

i u(i)
130 2185
131 2212

...
...

147 1278
148 2212

Thus r(3463) = 147 and l(3463) = 17. Since it is quite tedious (and time-consuming!) to
compare each value with all the previous ones, we need a quick way to spot repetitions.
This is provided by the following Cycle Detection Algorithm: Watch for an index i at
which ui = u2i . Let s(p) denote the least such i . The advantages of this approach are
that only one comparison need be made, and that only the values ui and u2i . Thus we
have no need to store the values of the ui . If ui 6= u2i then we use the recurrence once to
compute ui+1 , and twice more to compute u2i+2 . The old values ui , u2i are discarded,
and we continue with the two new values. The disadvantage of this approach is that it
is slightly inefficient, in the sense that the recurrence must be used 3s(p) times, which
is somewhat larger than r(p), which would be optimal. Using RhoDem, complete the
following table (the first row of which has been thoughtfully provided). Use RhoDem with
no cycle-detecting first, to determine the values of r(p) and l(p). By inspecting the values
ui , try to determine the value of s(p). Check your work by applying RhoDem a second
time with cycle-detecting.

p r s l

37 6 5 1

41

43

47

53

4. When we apply the Rho method to factor a number m , we compute the sequence ui

modulo m . Suppose that p|m . We can’t construct the sequence ui (mod p), because the
prime p is unknown. However, the ui computed are congruent (mod p) to those we would
have obtained if we had worked (mod p) (recall Theorem 2.1(5) of NZM). Hence ui ≡ u2i

(mod p) when i = s(p). Let s0(m) denote the least index i such that (ui − u2i,m) > 1.
Then

s0(m) = min
p|m

s(p).

30 Computational Laboratories in Number Theory



Moreover, for this index i we have (ui−u2i,m) < m unless s(p) = s0(m) for all p|m . Take
m = p1p2 where the pi are selected from the above table in such a way that s(p1) 6= s(p2).
Apply RhoDem to this m , with cycle-detecting, and note the poiint at which a divisor is
found. (To avoid all the prompts, you can enter m on the command line: Type rhodem
m [Enter].) Repeat this, with the pi selected so that s(p1) = s(p2). Note that the gcd
jumps from 1 to m , but that RhoDem does not give up. What does RhoDem do, instead?
Finally, choose two pi so that p1 < p2 but r(p1) > r(p2), and note that the prime factor
found by RhoDem is not the least prime factor of m .

WARNING: The Pollard Rho Method should only be applied to numbers that are already
known to be composite (as the result of a strong pseudoprime test, for example). If it were
applied to a large prime number p , it would run endlessly, switching to ever larger values
of c .

5. Apply RhoDem to m = 11111111111111111 = (1017 − 1)/9. What is the least s for
which (u2s − us,m) > 1? The program Rho will attempt to factor a given number m by
means of the Pollard rho algorithm. Type rho 11111111111111111 [Enter], or simply
rho [Enter], and answer the prompts. Is this much faster than using the program Factor?
What do you expect the running time of Rho to be, on average, as a function of the size
of the least prime factor of m?

6. What inequalities can be established between the three quantities r(p), s(p), l(p) ?
Explore.

7. In general you should avoid taking c = 0 or c = −2 in the rho method. Experiment
with these values of c , using RhoDem, and try to explain why these values of c are bad.
(Hint: For c = −2, note that if x · x ≡ 1 (mod p) and u ≡ x − x (mod p) then
u2 − 2 ≡ x2 − x2 (mod p).)

8. For the programmer. Richard Brent has observed that the cycle-detecting algorithm
can be made about 24% more efficient, as follows: Suppose that you have calculated un

and u2n , and that you have tried (uj − uk,m) for pairs (j, k) with the difference j − k
running from 1 to n . Starting from u2n , apply the iteration n + 1 times, to evaluate
u3n+1 . Next compute (u3n+1 − u2n,m), (u3n+2 − u2n,m), . . . , (u4n − u2n,m). Here
the differences between the subscripts range from 2n + 1 to 4n . If you start this with
n = 1, then n runs through powers of 2. To speed things up further, do not calculate the
gcd separately for each term indicated above. Instead, form a product of these numbers,
keeping track of the number of factors in the product. When the number of factors reaches
8, compute the gcd of the product with m . The product, like everything else, is computed
modulo m .

9. We now turn to a second method proposed by Pollard, the “p−1 Method.” Suppose that
m is a number to be factored, that p|m , and that (p − 1)|k! , so that ak! ≡ 1 (mod p)
whenever (a,m) = 1, which is to say that p|(ak! − 1,m). Thus we use the powering
algorithm to calculate a number x , 0 ≤ x < m , so that x ≡ ak! (mod m), and then we

Computational Laboratories in Number Theory 31



use the Euclidean algorithm to evaluate (x − 1,m) in the hope that this will disclose a
proper factor of m . If this gcd is still 1 then we try a larger k ; if it is m then we switch to a
different value of a . This method is rather erratic: It is remarkably fast for some numbers,
but for other numbers it is no faster than trial division. Apply the program P–1Dem to
several numbers, and note how the calculation proceeds. The program P–1 is ridiculously
fast when applied to m = 99999997425160993. Use P–1 to break m into factors, use Factor
to verify that the factors are indeed prime, say m = p · p′ . Apply Factor to p− 1 and to
p′−1, and thus demonstrate why P–1 is so quick for this number. At the opposite extreme,
the program P–1 will take an uncomfortably long time to factor the comparatively small
number m = 9904156957. Find the prime factors p of this m , and also the factorization
of p− 1 for each such p , to explain why the method is so slow in this case. Finally, apply
the program P–1 to our old favorite, m = 11111111111111111 = (1017 − 1)/9.

10. For the programmer. The Pollard p − 1 method, as explained above, is slightly
inefficient because the power of 2 dividing k! is much larger than is likely to be needed.
Try using dk instead of k! , where dk denotes the least common multiple of the integers
1, 2, . . . , k . Show that dk = a1 · a2 · . . . · ak where an = p if n is a power of p , an = 1
otherwise. Note that dk = dk−1 unless k is a primepower. Thus it is necessary to compute
(adk − 1,m) only when k is a primepower. Does this lead to a more efficient method?

It is notable that we have no proof that the Pollard Rho Method is efficient, although
we believe that on average it will yield a proper divisor of n in O(

√
p) steps, where p is

the smallest prime factor of n . Although the p − 1 method is erratic, the idea behind
the method is used in other methods, notably the Elliptic Curve Method (ECM), devised
by Lenstra in 1987. (This is discussed in Laboratory 20; see also §5.8 of NZM.) In 1982,
Carl Pomerance invented the Quadratic Sieve method (QS) of factoring, which has been
further developed to become the Multiple Polynomial Quadratic Sieve (MPQS). These
methods have largely usurped an older method, CFRAC, based on properties of continued
fractions. A new method, the Number Field Sieve, (NFS) is currently being developed,
and has already achieved some notable successes.

For more information concerning factoring, consult the following sources.

D. M. Bressoud, Factorization and primality testing, Springer-Verlag, New York, 1989.

D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition
in formal groups and new primality and factorization tests, Adv. Appl. Math. 7 (1986),
385–434.

D. Coppersmith, Modifications to the number field sieve, J. Cryptology 6 (1993), 169–180.i

J. D. Dixon, Factorization and primality tests, Amer. Math. Monthly. 91 (1984), 333–352.

R. K. Guy, How to factor a number, Proc. Fifth Conf. Numerical Math., Utilitas, Winnipeg,
1975, pp. 49–89.

32 Computational Laboratories in Number Theory



P. L. Montgomery, Speeding the Pollard and elliptic methods of factorization, Math. Comp.
48 (1987), 243–264.

C. Pomerance, Lecture Notes on Primality Testing and Factoring , MAA Notes 4, Math.
Assoc. of America, Washington, 1984.

H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, Boston,
1985, 464 pp.

H. C. Williams, Factoring on a computer, Math. Intell. 6 (1984), 29–36.

M. C. Wunderlich, Computational methods for factoring large integers, Abacus 5 (1988),
19–33.

Computational Laboratories in Number Theory 33



34 Computational Laboratories in Number Theory



LABORATORY 9
RSA Public Key Cryptography

New Program: RSA

Suppose that S is a finite set, and that f is a function that permutes the elements
of S . Then f is called a trap-door function if f(x) is easy to compute, but f−1(y)
is computationally infeasible to determine. Such functions can be used for Public key
cryptography. Suppose that Hal and Eve are going to exchange messages. Hal has a
permutation fH , and Eve has fE . The parameters used to define fH are called the key;
the keys are made public. Hal associates his message (plaintext) with some element x ∈ S
in a natural way, and sends y = fE(x) to Eve. Eve has some extra information, kept
secret, that enables her to calculate fe

−1(y) = x efficiently. Thus she—and only she—can
read Hal’s message. This is the general framework of public key cryptography, as proposed
by Diffie and Hellman in 1976. To be useful, one must find a good choice of the trap door
function. In 1978 Rivest, Shamir and Adleman proposed such a function. Let m be a
composite number composed of two or more very large primes, and take S to be the set
of reduced residues modulo m . Then take f to be of the form f(x) = xk (mod m).
Both k and m are published, but the factorization of m is kept secret. It is assumed that
the computation of f−1 is practically impossible unless the factorization of m is known.
Given the factorization, it is easy to invert f ; see Lemma 2.22 of NZM. Thus m and k
form the public key, and the prime factors of m form the private key.

1. Suppose that a string of ASCII digits is broken into 4 blocks, using a maximum
block length of 17. These four blocks represent residue classes a1 , a2 , a3 , a4 modulo
m = 371390679124477109. By powering, for 1 ≤ i ≤ 4 we find bi , 0 ≤ bi < m , such that
bi ≡ ak

i (mod m) where k = 192834926986429381. The bi are

136659364909143908
205033155495977457
107671059949150924
97488143995818961

What was the original message? First use the program SPsP to verify that m is com-
posite. Then use the program Rho to break m into factors. Use the program Factor to
establish that the factors found are indeed prime. Now type rsa [Enter]. First set the
block length: Type b, and then 17 [Enter]. To specify m type v, then m, and finally
371390679124477109 [Enter]. Next specify the factorization of m by typing f, and then
the factors. The program verifies that the number you enter is indeed a factor, so if you
make an error in keying in a factor, the chances are that it will be rejected. Now that the
machine has the factorization of m , it calculates φ(m). After noting this value, press any
key, and then to enter the parameter k type e, and then 192834926986429381 [Enter].
The machine computes the complementary parameter k′ . That is, k ·k′ ≡ 1 (mod φ(m))

Computational Laboratories in Number Theory 35



and 0 < k′ < φ(m). In order to decode the message, you need to swap k and k′ . To do
this, type s, and then [Esc] to return to the main menu. To enter the bi type r, and
then key in the four values. Type -1 [Enter] to terminate this process. To compute the
numbers bk′

i (mod m), and thus recover the original ai , type e. The machine recognizes
that the string of digits is a string of ASCII codes. Using the ASCII table, these codes are
converted back to text. What is this text?

2. Use the program RSA to encode the message “Number theory is fascinating!” with
block length 17, m = 121932633334857493 and k = 63948753094753099. After entering
the block length, modulus and parameter k , enter the text by typing t. Type e to encode.
What is the encoded message? Note that you have no means to decode this message, short
of factoring m , so that k′ can be found.

The RSA method can also be used to provide signature verification. Suppose that Hal
is using the permutation πH and that Eve is using the permutation πE . Everyone knows
how to compute these permutations, but only Hal knows how to compute π−1

H , and only
Eve knows how to compute π−1

E . To communicate the message a to Eve, Hal computes
b = π−1

H (πE(a)). Hal sends b to Eve. To recover the original message, Eve computes
π−1

E (πH(b)) = a . Eve is the only one who can decode the message, because she is the only
one who can compute π−1

E . Eve knows that Hal is the only one who could have sent the
message to her, because he is the only one who can compute π−1

H .

3. Suppose that Hal is using mH = 5502801089, kH = 23456789, and that Eve is using
mE = 1524323579, kE = 1234567891. Eve receives the message 1416161530. Since Eve
knows the factorization of mE , Eve also knows that k′E = 1257892699. Is this message
from Hal? What does it say? In this example, mH > mE . What problem would arise if
mH < mE ? What changes would you make to cope with this problem?

An RSA code can be broken if the value of φ(m) is known. One way to determine
φ(m) is to factor m , but one could conceive that possibly φ(m) might be found more
quickly, without having to factor m . However, we argue now that this is not the case: If
the value of φ(m) is known then the factorization of m can be recovered with little work.
Hence any quick method of evaluating φ(m) would yield a quick method of factorization.

If φ(m) = m− 1 then m is prime, and we are done. (Of course such an m would not
be used for RSA encryption.) Hence we may suppose that φ(m) < m− 1, i.e. that m is
composite.

If m is a product of two distinct primes, say m = pq , and if φ(m) is known, then the
primes can easily be found. To see this, note that p + q = m− φ(m) + 1. Since the sum
p + q and the product pq are both known, the values of (p− q)2 = (p + q)2 − 4pq can be
determined. By taking square roots one obtains |p−q| , and the primes are (p+q±|p−q|)/2.
(This is, after all, how one solves for the roots of a quadratic polynomial.) This procedure
may be attempted whenever m and φ(m) are both known. If it fails then we know that
m is not the producte of two distinct primes. To eliminate the (unlikely) possibility that
m = p2 , we may compute

√
m .

Now we come to the heart of the matter: m is the product of 3 or more primes.
Suppose that a number c is known with the property that ac ≡ 1 (mod m) whenever

36 Computational Laboratories in Number Theory



(a,m) = 1. For example, φ(m) is such a number c . It is enough to find a proper divisor of
m , since the method may then be applied to the divisors, repeatedly, until all the factors
are prime. The number c may be hard to factor, but at least we can determine the power
of 2 in it, say c = 2j · k with k odd. Choose a number a at random, 0 < a < m . If 1 ¡
(a,m) < m then we have found a proper divisor of m . If (a,m) = 1 then put b = ak . The
valueof b (mod m) is quickly found by the powering algorithm. By repeated squaring,
compute b2 , b4 , . . . , b2j

(mod m). Actually, there is no need to compute the last term,
since this number is ≡ 1 (mod m). In the sequence of powers of b computed, suppose
that the first 1 is preceded by a number other than −1. Then we have an x such that
x 6≡ ±1 (mod m), but x2 ≡ 1 (mod m), and hence (x − 1,m) is a proper divisor of
m . This procedure is not guaranteed to work for every a , but should work for a large
proportion of a ’s modulo m , provided that m is divisible by two or more odd primes.
(We may assume that m is odd.) In the one remaining case, m = pk with k > 1, the
prime p can be found quickly, since p = m/(m,φ(m)).

4. Let m = 308557669718497477. This number is the product of two distinct primes,
and φ(m) = 308557668607386336. Find the primes. (Since these numbers are too large
for most pocket calculators, you may find it helpful to use UBASIC. No programming is
involved. For example, in the UBASIC environment you may type print 2*3 [Enter],
and the response is 6. To obtain [

√
m] use the isqrt command. For example, if you type

print isqrt(12345) [Enter], you receive the response 111. Since 111 · 111 = 12321 <
12345, it follows that 12345 is not a perfect square.)

5. Let m = 144145168546451. Given that φ(m) = 144136398922632, show that m is not
a prime, and is not a product of two primes. (I.e. verify that φ(m) < m − 1, that m is
not a perfect square, and that (m − φ(m) + 1)2 − 4m is not a perfect square.) Use the
procedure described above to find the prime factorization of m . How many different bases
a do you need to consider?

6. For the programmer. Since the lower ASCII codes all lie in the range 0 . . . 128, it is
inefficient to concatenate the decimal representations of these numbers. Modify the RSA
program so that the binary representations of these numbers are concatenated to form a
string of 0’s and 1’s that becomes the message. After the message is cut into blocks, each
block represents a residue class written in binary.

7. For the committed programmer. Construct a program in UBASIC that operates like
the RSA program, but accepts bigger parameters. Introduce a facility for reading messages
from files on floppy disks, so that coded messages do not have to be keyed in one digit at
a time.

When presenting the RSA method, the inventors offered a $100 prize to the first
person to decrypt a sample message based on a 129-digit modulus m . As reported in
the New York Times (April 27, 1994, p. A11), this m was factored by a group organized
by Arjen Lenstra and Derek Atkins. For more information on public key cryptography,
consult the following sources.

Computational Laboratories in Number Theory 37



W. Diffie, The first ten years of public-key cryptography, Proc. IEEE 76 (1988), 560–577.

W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Informat.
Theory, IT 22 (1976), 644–654.

M. Gardner, A new kind of cipher that would take millions of years to break, Scientific
American (1977), 120–124.

K. S. McCurley, A key distribution system equivalent to factoring, J. Cryptology 1 (1988),
95–105.

M. Rabin, Digitized signatures and public key functions as intractable as factorization,
Laboratory for Computer Science, Massachusetts Institute of Technology, MIT/LCS/TR-
212, 1979.

R. L. Rivest, RSA chips (past/present/future), Eurocrypt ’84, 159–165.

R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and
public key cryptosystems, Commun. ACM 21 (1978), 120–126.

H. C. Williams, A modification on the RSA public-key encryption, IEEE Trans. Informat.
Theory IT 26 (1980), 726–729.

H. C. Williams, Some public-key crypto-functions as intractable as factorization, Cryp-
tologia 9 (1985), 223–237.

H. C. Williams, An M3 public-key encryption scheme, Advances in Cryptology—CRYPTO
85, Springer-Verlag, 1986, pp. 358–368.

38 Computational Laboratories in Number Theory



LABORATORY 10
Hensel’s Lemma

New Program: Hensel

Hensel’s Lemma (as discussed in §2.6 of NZM), can be formulated as follows: Let f(x)
be a polynomial with integral coefficients, let p be a prime, and suppose that f(a) ≡ 0
(mod pj) for some j ≥ 1.
Case 1. f ′(a) 6≡ 0 (mod p). (The “non-singular” case.) There is a unique c (mod p)
such that f(a + cpj) ≡ 0 (mod pj+1). This c is the root of the linear congruence

f ′(a)c ≡ −f(a)/pj (mod p).

Case 2. f ′(a) ≡ 0 (mod p). (The “singular” case.) If f(a) ≡ 0 (mod pj+1) then
f(a+cpj) ≡ 0 (mod pj+1) for all c (mod p). If f(a) 6≡ 0 (mod pj+1) then f(a+cpj) 6≡
0 (mod pj+1) for all c (mod p).

1. Let f(x) = x2 + 1. Note that f(9) ≡ 0 (mod 41), and that f ′(9) = 18 6≡ 0
(mod 41). Since f(9)/41 = 2, it follows that to lift this root we must take c so that
18c ≡ −2 (mod 41). Type lincon 18 -2 41 [Enter] to determine this c , and thus
find a root of f(x) ≡ 0 (mod 412). Confirm your work by applying PolySolv to f(x),
first with m = 41, and then with m = 412 = 1681.

2. Let f(x) = x3 + x + 1, as in Problem 2 of Laboratory 5. From Theorem A.5 on p.4̃88
of NZM we know that all roots of f(x) (mod p) are non-sinugular, unless p divides the
discriminant of f , denoted D(f). In the present case, D(f) = −31. Apply PolySolv to
f(x), and take m = 31. Note the two roots. Now apply PolySolv to f ′(x) = 3x2 + 1.
Thus discover that one of the roots of f (mod 31) is singular, and that the other one is
non-singular. From Case 2 of Hensel’s Lemma we know that the singular root either lifts
to 31 roots (mod 312 ), or else does not lift. Apply PolySolv to f(x) with m = 312 = 961,
to determine which.

3. The mundane chore of applying LinCon to lift roots to higher powers of p is automated
by the program Hensel. Type hensel [Enter], and then take f(x) = x2 + 1 by typing
1 [Enter] 2 [Enter] 1 [Enter] 0 [Enter]. Take p = 5. Us the uparrow (↑) key to
view solutions (mod 5j) that lie above the root x ≡ 2 (mod 5). Use the rightarrow
(→) key to view the other solution (mod 5), and those that lie above it. Note that in both
cases, the sequence c(j) of coefficients seems to exhibit no simple pattern.

4. The polynomial f(x) = x2 + 1, when considered (mod 2), has a singular root x ≡ 1
(mod 2). Does this lift to a solution (mod 4)? By invoking the program Hensel, one may
see that the answer is “No,” because the uparrow key (↑) is inactive. Now apply Hensel
to g(x) = x2 + 3. (That is, type d 1 [Enter] 2 [Enter] 3 [Enter] 0 [Enter].) Note
that f(x) and g(x) are the same (mod 2), but different (mod 4). The uparrow key can

Computational Laboratories in Number Theory 39



now be used to lift the solution x ≡ 1 (mod 2) to x ≡ 1 (mod 4). The rightarrow key
can be used to give its companion, x ≡ 3 (mod 4). Note that the two roots 1, 3 (mod
4) both lie above the single root 1 (mod 2). You may use the left- and rightarrow keys
to switch between the two roots (mod 4), but in both cases the uparrow key is inactive,
so neither of these roots lifts to give a root (mod 8). Finally, take h(x) = x2 + 7. Note
that g(x) and h(x) are the same (mod 4), but different (mod 8). Apply Hensel to h(x),
and note that the root 1 (mod 4) lifts to two roots, 1, 5 (mod 8). Also, note that the
root 3 (mod 4) lifts to two roots, 3, 7 (mod 8). Use the arrow keys to explore the tree
of solutions (mod 2j ), and sketch it through (mod 27 ), say. Note that two long strands
are forming. How far must these strands be extended before one can be sure that they
continue indefinitely? (Hint: Apply Theorem 2.24 of NZM. Theorem A.5 on p. 488 is also
relevant.)

5. Use Hensel to explore the tree of solutions of x2 + x + 223 (mod 3j), through j = 7.
Sketch your findings. Thus verify and extend Table 1 on p. 90 of NZM.

6. Apply Hensel to f(x) = 5x + 3. Note that the sequence of c(j) seems to be periodic.
For each prime p < 20, note the apparent period. We know that the base 10 expansion of
a real number x is periodic if and only if x is rational, and that the least period of the
base 10 expansion of a/q is the order of 10 (mod q ), provided that (10a, q) = 1. (This is
Problem 30 at the end of §2.8 of NZM.) Is there an analogue at work here? Explore.

7. Apply Hensel to f(x) = x4 − 10x3 + 35x2 − 50x + 24 (mod 3j), and report your
findings. Note that you can switch between viewing singular and non-singular roots.

8. Apply Hensel to f(x) = x5− 15x4 + 85x3− 225x2 + 274x− 120 (mod 3j), and report
your findings.

9. Use Hensel to study f(x) = xk−1 (mod pj) for various combinations of k and p . For
what combinations do you encounter singular roots? (Note: The number of roots (mod
p) is (k, p− 1), according to Theorem 2.37 of NZM.)

40 Computational Laboratories in Number Theory



LABORATORY 11
Power Residues & Primitive Roots

New Programs: OrderDem, Order, PrimRoot

The least positive integer h such that ah ≡ 1 (mod m) is called the order of a modulo
m . (This is Definition 2.6 on p. 97 of NZM.) The order of a modulo m exists and is finite
if (a,m) = 1; otherwise it is undefined.

1. Use PowerTab to determine the order of a for each reduced residue class a (mod 11).
What orders occur? How many times do they occur? What is the least common multiple
of these orders? Repeat this with 11 replaced by some other prime number. Formulate
conjectures regarding the situation for a general prime modulus. Compare your findings
with Lemma 2.35 and Theorem 2.36 of NZM.

2. Suppose that a has order h modulo m . How is h related to other numbers k such that
ak ≡ 1 (mod m)? Use PowerTab to investigate, for both prime and composite moduli,
and then formulate a conjecture. Compare your conjecture with Lemma 2.31 of NZM.
Euler’s congruence asserts that aφ(m) ≡ 1 (mod m) if (a,m) = 1. What does this imply
concerning the relation between the order of a and φ(m)? (See Corollary 2.32 of NZM.)

3. Suppose that a has order h modulo m . What is the order of ak modulo m? Experi-
ment with several configurations, and formulate a conjecture. Compare with Lemma 2.33
of NZM.

4. Suppose that a has order h modulo m , and that b has order k modulo m . How large
can the order of ab be? How small? Use pairs taken from your work on Problem 1 above.
If (h, k) = 1, what is the order of ab modulo m? Study some cases, and formulate a
conjecture. Compare your findings with Lemma 2.34 of NZM.

5. Suppose that a has order h modulo m , that a has order k modulo n , and that
(m,n) = 1. What is the order of a modulo mn? Try a = 2, m = 7, n = 11. Try a = 2,
m = 5, n = 17. Try a = 17, m = 7, n = 11. Formulate a conjecture (after considering
additional examples, if necessary).

6. Use PowerTab to determine the order of 7 (mod 101), and of 29 (mod 101), and
use Mult to determine the value of 7 · 29 (mod 101). Repeat this with 17 · 75 (mod 91),
and with 233 · 313 (mod 424). Suppose that a · a ≡ 1 (mod m). Do you suspect a
connection between the order of a (mod m), and of a (mod m)? Can you prove your
conjecture? (This is found as Problem 14 at the end of §2.8 of NZM.)

The order of a modulo m can be determined by calculating a , a2 , . . . until the least h is
found such that ah ≡ 1 (mod m). However, since this h may well be of size comparable
to m , it is usually much faster to use the fact that h|φ(m). After factoring φ(m), we

Computational Laboratories in Number Theory 41



search for a minimal divisor h of φ(m) with the property that ah ≡ 1 (mod m). Note
that if ad ≡ 1 (mod m), and if q is a prime divisor of d , then either ad/q ≡ 1 (mod m),
in which case we replace d by d/q , or else ad/q 6≡ 1 (mod m), in which case the power
of q dividing d is the same as the power of q dividing the order of a . This technique is
discussed on p. 100 of NZM,

7. To see how the order of 2 modulo 101 would be determined, type orderdem 2 101
[Enter]. To obtain the result without witnessing the calculation, type order 2 101
[Enter]. Since the first step is to factor m in order to calculate φ(m), some time may be
saved by providing the value of φ(m), if this is known. Type order 2 101 100 [Enter].
The economy here can be quite noticeable: if the modulus is a 17-digit prime p , then it
will be much faster to tell the machine that φ(p) = p− 1, rather than let the machine try
to factor p by trial division. When the values a , m , c are given to the program Order, it
is not necessary that c actually be the value of φ(m). All that is required is that ac ≡ 1
(mod m). What happens if c does not meet this condition? Try typing order 2 101 35
[Enter].

8. The program PrimRoot finds the least positive primitive root of a prime number p , by
calculating the order of a for a = 2, 3, . . . until an a is found of order p− 1. Usually this
does not take very many trials. Find the least positive primitive root of several primes
in this way. For example, type primroot 1093 [Enter]. If you wish to find the least
primitive root larger than a certain number a , type primroot p a [Enter]. (If you omit
the a then by default a is set equal to 0.) By using the program PrimRoot repeatedly,
find all the primitive roots of the prime p = 101. How many primitive roots do you
find? (Recall Theorem 2.36 of NZM.) What is the biggest gap found between consecutive
primitive roots?

9. The program PrimRoot is not equipped to find primitive roots modulo pk when k > 1,
but the program Order is useful in this connection. Suppose that g is a primitive root
modulo p . Then g is a primitive root modulo p2 if and only if the order of g modulo p2

is p(p− 1). The only other possibility is that the order of g modulo p2 is p− 1, in which
case g + tp is a primitive root modulo p2 whenever t 6≡ 0 (mod p). (See the proof of
Theorem 2.39 of NZM.) Is 2 a primitive root modulo 1012 ? Show that 14 is a primitive
root of 29. Is it a primitive root of 292 ? Find the least positive primitive root g of the
prime 40487. Show that g is not a primitive root modulo 404872 . (This is the least prime
p whose least positive primitive root fails to be a primitive root modulo p2 .)

10. To determine the order of a residue class a modulo m , we need first a number c such
that ac ≡ 1 (mod m). We could take c = φ(m), but usually a smaller number will do.
Let c(m) denote the least positive integer c such that ac ≡ 1 (mod m) for all reduced
residue classes a . This is the Carmichael function. Its values are determined by the
following relations. c(1) = c(2) = 1. c(4) = 2. If k ≥ 2 then c(2k) = 2k−2 . If p is an odd
prime then c(pk) = pk−1(p − 1). If (m1,m2) = 1, then c(m1m2) = [c(m1), c(m2)] . Use
the program Car to determine the value of c(100). Find a reduced residue class modulo
100 that has this maximal order.

42 Computational Laboratories in Number Theory



11. For the programmer. Write a program that counts the number N(x) of those primes
p not exceeding x for which 2 is a primitive root of p . Would you conjecture that there are
infinitely many such primes? Does it seem that this set of primes has positive asymptotic
density among the set of all primes? That is, do you guess that N(x) ∼ cπ(x) as x →∞
for some positive constant c? Gauss conjectured that there exist infinitely many such
primes, and E. Artin suggested a particular asymptotic density. However, D. H. Lehmer,
A note on primitive roots, Scripta Math. 26 (1963), 117–119 found that numerical evidence
does not fit with Artin’s conjecture. This led Artin to the realization that one aspect of
the situation had been overlooked (see pp. viii, ix of Artin’s Collected Works). A modified
form of Artin’s conjecture is now widely accepted as very likely to be true, especially since
C. Hooley, On Artin’s conjecture, J. Reine Angew. Math. 225 1967, 209–210, showed that
the modified conjecture is a consequence of the Generalized Riemann Hypothesis. The
conjectured constant is

c =
∏
p

(
1− 1

p(p− 1)

)
where the product is taken over all primes. The number 2 can be replaced by any integer a ,
and the general conjecture is that there is a positive constant ca such that Na(x) ∼ caπ(x)
as x →∞ , provided that a 6= −1, a 6= 0, and that a is not a perfect square.

Computational Laboratories in Number Theory 43



44 Computational Laboratories in Number Theory



LABORATORY 12
Indices — The Discrete Logarithm

New Programs: IndTab, Ind, IndDem, HSortDem

Suppose that g is a primitive root of the prime number p . If (a, p) = 1 then there is a
number ν such that gν ≡ a (mod p); moreover, the value of ν is uniquely determined
modulo p − 1. This ν is called the index of a with respect to the primitive root g . In
symbols we write ν = indg a when the value of p has already been specified. By way
of analogy, any positive real number x can be written uniquely in the form ey where
y = lnx . Thus indg a is a discrete analogue of lnx .

For a given prime p < 104 , the program IndTab displays a table of the indices of
the reduced residue classes modulo p . If there are more values than can be displayed
on a single screen, then you may use PgUp and PgDn or j to move around in the table.
Initially, g is the least positive primitive root of p , but you are free to switch to a different
primitive root. The program will prevent you from choosing a base that is not a primitive
root. The program also provides a table of the powers of g , which is obtained by typing e.
To return to the table of indices from the table of exponentials, type i. These tables may
be used in the manner of tables of logarithms and exponentials, to find the solutions of
multiplicative congruences. For example, to find the solutions of the congruence x3 ≡ 12
(mod 97), we take g = 5, and write x ≡ 5µ (mod 97). From IndTab we discover that
ind5 12 = 42. That is, 12 ≡ 542 (mod 97). Hence the initial congruence may be rewritten
as 53µ ≡ 542 (mod 97). This is equivalent to asserting that 3µ ≡ 42 (mod 96). From
LinCon we discover that this is equivalent to µ ≡ 14 (mod 32). That is, µ ≡ 14, 46, or
78 modulo 96. Returning to the IndTab program, we enter p = 97 again, and then press
e to switch to the table of exponentials, i.e. powers of the primitive root 5. From this
table we deduce that 514 ≡ 48 (mod 97), that 546 ≡ 31 (mod 97), and that 578 ≡ 18
(mod 97). Hence the desired solutions are x ≡ 48, 31, and 18 modulo 97. As a check,
one may use the program Power to verify that 483 ≡ 313 ≡ 183 ≡ 12 (mod 97). If the
actual roots of the congruence x3 ≡ 12 (mod 97) are not needed, but only the number
of roots, then one may proceed more simply, using Euler’s criterion (Corollary 2.38 on p.
101 of NZM) and the program Power: Since 1296/(3,96) = 1232 ≡ 1 (mod 97), it follows
that the given congruence has exactly (3, 96) = 3 solutions.

1. Use the program IndTab to find the solutions of the congruence x4 ≡ 693 (mod 1093).

2. Use IndTab to find all solutions of the congruence x5 ≡ 693 (mod 1093).

3. Use IndTab in the manner above to show that the congruence x7 ≡ 693 (mod 1093)
has no solution. At what point in the argument does it become apparent that there is no
solution? Use Theorem 2.37 of NZM to provide a simpler proof that this congruence has
no solution.

4. Use IndTab to find all solutions of the congruence x10 ≡ 475 (mod 9973).

Computational Laboratories in Number Theory 45



5. Use IndTab to find all x such that 2x ≡ 133 (mod 9973).

6. With p = 9973, use IndTab to determine the value of ind103 877.

The program IndTab is restricted to p < 104 because the entire table is computed
at the outset, and held in active memory (RAM). We have efficient means to compute
powers, and efficient means to located the least positive primitive root g , and thus we can
easily compute values of gµ (mod p) as µ runs over any given interval. What seems to
be hard is to calculate values of indg a for a general a . Indeed, methods of encryption
have been proposed whose security depends on the supposition that evaluating indices is
computationally difficult. This computational snag is often referred to in the literature as
the problem of the discrete logarithm.

The program IndTab first constructs a list of the values gν , (i.e., exponentials), and
then uses it to form a table of the indices. Thus ind a is found for each a (mod p), but
the amount of work is proportional to p . A first step toward improving on this has been
suggested by Shanks: Suppose that you wish to calculate indg x (mod p). Let s be a
base to be described later; we want to find i and j so that gis+j ≡ x (mod p). To
this end, use the extended Euclidean algorithm (i.e., the program LinCon) to find g so
that gg ≡ 1 (mod p). Construct a table of the values xgj (mod p) for 0 ≤ j < s .
Then, for i = 0, 1, . . . , compute gis (mod p), and look to see if the number computed
is found in the table. When it is found, we have the desired values of i and j , and
indg x = is + j . When searching for a particular value of gis in the table, it would be
very slow to inspect all s values. Instead, we sort the table of values xgj (mod p) by
size, into increasing order. (A useful algorithm for sorting, called HeapSort, is discussed
later in this laboratory.) Then one can search for a specified value in the table by binary
subdivisions. To motivate the choice of s , we consider the amount of work is required.
The time required to construct the table is O(s), but the time required to sort it is a little
greater, O(s log s). Searching by binary subdivision takes O(log s) steps, and we expect
that it will be necessary to conduct ≈ p/s such searches. Thus the total amount of work
is proportional to (p

s
+ s

)
log s.

This is minimized by taking s ≈ √
p , and then the time involved is O(p1/2 log p), a little

slower than proving that p is prime by trial division. Thus we see that Shanks’ algorithm
is not very fast for big p , although it represents a big improvement over O(p).

In practice, the parameter s above is constrained also by the amount of available
memory. For example, the program Ind calculates indg x (mod p) by Shanks’ method
for p < 109 ; for p < 108 it takes s to be the integer nearest

√
p , but for larger p it

takes s = 10000 so that the data fits into one 64K segment of memory. (Each entry of the
table occupies 4 bytes, and a companion table 2 bytes each, so the tables require 60K of
memory.) To witness Shanks’ algorithm in action, type inddem 2 45 101 [Enter]. Also,
try inddem 2 3 1093 [Enter].

For more information concerning algorithms used to calculate indices see the following
papers.

46 Computational Laboratories in Number Theory



D. Coppersmith, A. M. Odlyzko, R. Schroeppel, Discrete logarithms in GF(p), Algorith-
mica 1 (1986), 1–15.

D. M. Gordon, Discrete logarithms in GF(p) using the number field sieve, SIAM J. Discrete
Math. 6 (1993), 124–138.

B. A. LaMacchia, A. M. Odlyzko, Computation of discrete logarithms in pirme fields, Des.
Codes Cryptogr. 1 (1991), 47–62.

K. S. McCurley, The discrete logarithm problem, Cryptology and computational number
theory (Boulder, 1989), Amer. Math. Soc., Providence, 1990, pp. 49–74.

A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance,
Advances in Cryptography (Proc. 1984 EUROCRYPT Workshop), Springer-Verlag, New
York, 1985, pp. 224–314.

7. Use PrimRoot to find a primitive root g modulo p = 123456791. Use the pro-
gram Ind to determine indg 57085185 (mod p). For example, type ind 17 57085185
123456791 [Enter]. Use this information to find all roots of the congruence x5 ≡
57085185 (mod 123456791).

8. The program Ind searches for a specified value x among the powers of g (mod p).
It is essential that (g, p) = 1, but it is not necessary that p be prime or that g be
a primitive root. Is 3 a power of 2 modulo 123456791? That is, does the congruence
2ν ≡ 3 (mod 123456791) have a solution? Type ind 2 3 123456791 [Enter]. Here
the modulus is prime, but the base is not a primitive root. Note that the program returns
only the least non-negative solution. The period of the solutions is p−1 if g is a primitive
root(mod p), but it is smaller in other cases. Find all ν (mod 123456790) such that
2ν ≡ 3 (mod 123456791). (Hint: Use the program Order to determine the order of 2
(mod 123456791).) Confirm that Ind still works when p is composite, by typing ind 2 23
91 [Enter]. Type 2 17 123456791 [Enter]. What happens?

9. Assume that p = 1234567897531 is prime. Use the programs GCD and Power to deter-
mine the number of roots of the congruence x77 ≡ 13 (mod 1234567897531). (Theorem
2.37 of NZM is relevant here.) Note that you do not have any tool available to find these
roots, since p is so large. Such tools do exist; for example one might elaborate on the
technique developed in the next laboratory. Alternatively, the polynomial x77 − 13 can
be factored quickly (mod p), for example by the method of D. G. Cantor and H. Zassen-
haus, A new algorithm for factoring polynomials over finite fields, Math. Comp. 36 (1981),
587–592.

We now consider the problem of sorting numbers by size. While not a number-theoretic
problem, we find it useful (as above) to be able to sort numbers with reasonable efficiency.
Suppose that a1, a2, . . . , an are n distinct numbers that we want to sort into increasing
order. First, in Bubble Sort , one passes repeatedly through the list, transposing pairs

Computational Laboratories in Number Theory 47



that are found to be out of order, until a pass discloses no transpositions. This takes time
O(n2), which is terrible! Never use Bubble Sort! So how much faster can we hope for? We
derive a lower bound. When two elements ai and aj are compared, the set of all possible
orderings is divided into two classes, those with ai > aj and those with ai < aj . After k
such comparisons have been made, the set of all possible orderings has been divided into
at most 2k classes. If 2k < n! then there is a class containing two different orderings.
Consequently, if the original ordering of our ai is one of these orderings, then we have not
yet distinguished it from all other possible orderings, and at least one more comparision is
necessary. Thus for any sorting algorithm there is an ordering of the ai that gives rise to
more than (log n!)/ log 2 comparisons. Since n! > (n/e)n , the worst-case running time of
any sorting algorithm is � n log n . This lower bound is of the correct order of magnitude,
since we have algorithms that run in O(n log n) time.

Among the possible methods that one might consider, we confine our attention to
HeapSort, invented by J. W. J. Williams. This method runs in O(n log n) time, with the
worst case only about 20% longer than the average. It is very easy to understand and to
program, and requires little memory. In HeapSort, we think of the ai as forming a binary
tree, in which ai has subordinates a2i and a2i+1 , as long as these indices do not exceed
n . Conversely, if i > 1 then ai reports to its superior, a[i/2] . The situation for n = 28 is
depicted below:

a1

a2 a3

a4 a5 a6 a7

a8 a9 a10 a11 a12 a13 a14 a15

a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28

If ai is smaller than one of its underlings then we exchange ai with the larger of a2i

and a2i+1 . We repeatedly demote a particular entry until it majorizes its subordinates.
(Executives above their level of competence are demoted.) We begin at the bottom of the
table (high indices), and work up. Thus in the example above, we would compare a14 with
a28 , and exchange them if a14 is the smaller. Then we compare a26 with a27 to determine
which is the larger, and then compare that one with a13 . We demote a13 if one of the
numbers under it is larger. We continue with this, until ai ≥ a2i and ai ≥ a2i+1 whenever
the indicies lie between 1 and n . Such a configuration we call a heap. Once the heap has
been formed, it is clear that a1 is the largest number in the entire collection. We swap a1

with an . This destroys the heap property, so we demote the new a1 until it is restored.
At the point we have a heap of n − 1 numbers, and an is ignored at the bottom. The
new entry a1 is the largest member in the heap (second largest, overall), so we exchange
a1 and an−1 . At this point both an−1 and an have reached their final resting places.
We demote the new a1 until we again have a heap, and then again the top of the heap

48 Computational Laboratories in Number Theory



is retired. Continuing in this manner, with successively smaller heaps, we eventually have
no heap left, and a1 ≤ a2 ≤ · · · ≤ an .

For extremely large collections (such as the Manhattan telephone directory), it is
important to sort as quickly as possible. In such cases it may be worth using the more
complicated QuickSort algorithm. For a detailed discussion of sorting, see D. E. Knuth,
The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Read-
ing, 1973. In particular, HeapSort is described on pp. 145–149, 153–158.

10. The program HSortDem demonstrates the HeapSort algorithm. Type hsortdem [En-
ter], choose the number n of integers to be sorted, and witness the process. How does
the number of comparisons compare with the lower bound derived above?

Computational Laboratories in Number Theory 49



50 Computational Laboratories in Number Theory



LABORATORY 13
Proving Primality

New Program: ProveP

We have seen that a composite number can be proved to be composite very quickly by
means of the strong pseudoprime test. Finding the complete factorization of a composite
number takes longer, but for large n we have methods that are much faster than trial
division. To complete the picture we need a fast method for proving the primality of a
large prime number p . In this direction, we show that proving the primality of p is no
harder than factoring p − 1. Suppose that gp−1 ≡ 1 (mod p), and that g(p−1)/q 6≡ 1
(mod p) for every prime factor q of p− 1. Then g has order p− 1 modulo p , and hence
p must be prime. In general, if p is prime then such a g is not hard to find; thus we have
a means of proving that p is prime provided that we can factor p− 1.

1. Type primroot 8675309 [Enter]. The machine quickly responds with a primitive
root, because 8675308 is easily factored. Thus the primality of 8675309 has been rigorously
established. (David Farmer proposes that this is the largest prime number ever mentioned
in a popular song.)

The simple idea used above can be strengthened in several ways. First, suppose that
q is a prime factor of p− 1, say qk‖(p− 1). Let p′ denote an arbitrary prime factor of p .
Presumably the only such p′ is p′ = p , but this remains to be proved. We suppose that
the prime factor q of p − 1 has been found by trial division, or by some other factoring
technique. Suppose that we can find a number a such that ap−1 ≡ 1 (mod p) but such
that (a(p−1)/q − 1, p) = 1. Then ap−1 ≡ 1 (mod p′) but a(p−1)/q 6≡ 1 (mod p′). (Note
that we can deduce this without knowing the value of p′ .) Hence qk divides the order of
a modulo p′ , and consequently qk|(p′ − 1). That is, every prime factor p′ of p is ≡ 1
(mod qk). Suppose we repeat this for several different prime factors q of p−1. (The value
of a that works is allowed to depend on q .) Let s denote the product of the primepowers
qk for which this calculation has succeeded. Then we can assert that every prime factor p′

of p is ≡ 1 (mod s). Since the product of two or more such primes must be > s2 , we see
that if s >

√
p then p must be prime. Hence we can establish the primality of p , based

only on an incomplete factorization of p− 1, provided that we can factor s , s|(p− 1), and
s >

√
p . (This analysis is related to Problems 38, 39 at the end of §2.8 of NZM.)

2. It is easy to confirm that 716 + 516 = 2 · 16692759230113. Use the program ProveP
to demonstrate that this second factor is prime. That is, type provep 16692759230113
[Enter], and note the results.

3. If, as the factorization of p − 1 proceeds, a point is reached at which the factored
portion s of p−1 is so large that testing p for divisors d ≡ 1 (mod s), d ≤ √

p will take
less time than the time already spent trying to factor p − 1, then the program ProveP

Computational Laboratories in Number Theory 51



automatically switches to the latter approach. To witness an instance of this, apply ProveP
to the number 5 · 1017 + 21 = 500000000000000021.

The method of proving primality being employed here can be made still more efficient.
Suppose that as prime factors q of p − 1 are being found, we reach a point at which
p1/3 < s ≤ p1/2 . Then either p is prime or p is the product of two primes, p = p′p′′ , say.
Write p′ = a′s + 1 and p′′ = a′′s + 1, so that p = a′a′′s2 + (a′ + a′′)s + 1. With a little
care with inequalities, it can be shown that 0 < a′a′′ < s and that 0 < a′ + a′′ < s . Thus
the representation of p that we have given here in terms of powers of s coincides with the
expansion of p in base s . That is, by the division algorithm we may write p = c2s

2+c1s+1
with 0 ≤ ci < s , and c1 = a′ + a′′ , c2 = a′a′′ . To determine whether such a′ and a′′

exist, we have only to test whether c2
1− 4c2 is a perfect square. This embellishment is due

to H. C. Williams.

4. Apply the program ProveP to demonstrate that the number 1234567897531 is prime.
Also that 975312468097531 is prime. If the program GetNextP is given an argument x
for which 109 < x < 1018 , then the number p returned is the least integer > x that is a
strong pseudoprime to bases 2, 3, 5, 7 and 11. It is incredibly likely that p is prime, but
to obtain a rigorous proof one should use the program ProveP. In this manner, find the
least prime greater than 12345678987654321.

5. In most cases the method used by ProveP is reasonably quick. However, it can happen
that p− 1 = 2q where q is prime. In such a case, attention is focused on q . After a brief
attempt to factor it by trial division fails, one should apply a strong pseudoprime test. If
q passes the test, then a rigorous proof that q is prime may be obtained by applying the
program ProveP to q . In attempting to factor q−1 one may encounter the same problem as
with p− 1. Nevertheless, by systematically employing the programs ProveP, SPsP, Factor
and Rho, the needed factorizations can be rigorously established. For example, suppose
that we apply the program ProveP to show that the number p = 987292984329259 is
prime. The machine quickly finds that p − 1 is divisible by 2 and by 3, but then there
is a pause. Touch any key to interrupt the program, and you find that it is trying to
factor 164548830721543. Type q to quit, and then apply the program SPsP to this factor.
In this way we discover that we are dealing with a composite number, so we apply the
program Rho, which discloses that the factor may be written as 5378033 · 30596471. We
apply the program Factor to the first of these numbers, to confirm that it is prime. Then
we again apply ProveP to the original number p . Again the machine finds 2 and 3,
but when it pauses, we interrupt it, type s to indicate that we wish to supply a prime
factor, and enter 5378033. This time the program reaches a successful resolution without
further intervention, and it is proved that p is indeed prime. Show that 1018 − 11 =
999999999999999989 is prime. What intermediate numbers need to be factored? Give an
account of the programs used, and the findings. (By applying GetNextP to this number
you may confirm that this is the largest prime not exceeding 1018 . Similarly, show that
(1018 − 7)/3 = 333333333333333331 is prime. Indicate what numbers are encountered,
and how they are dealt with.

6. Show that 1017 + 19 and 1017 + 21 are both prime.

52 Computational Laboratories in Number Theory



7. What is the first composite number in the sequence 31, 331, 3331, 33331, . . . ? Apply
ProveP until the first composite element is encountered. Here the k -th term is uk =
(10k − 7)/3. Show that for every k , the least prime factor dividing uk is ≥ 17. Show
that 17|uk precisely when k lies in a certain residue class (mod 16). (Suggestion: Use the
program PowerTab to display 10k (mod m) for appropriate m .)

8. For the programmer. When attempting to prove that p is prime, we factor p−1. After
removing the factor 2, this leaves p1 = (p− 1)/2 to be factored—but this may be prime.
In such a case we would confirm that p1 is prime by applying ProveP. However, it may
happen that p1 = 2p2 + 1 with p2 prime. Perhaps also p2 = 2p3 + 1 with p3 prime. It
is in such a case that our procedure for establishing primality will require the most work.
How long can a chain of primes be, with pi = 2pi+1 + 1? Construct a program to explore
this. Apply the SPSP test to odd integers until a probable prime p is found. Then apply
SPSP to 2p + 1, and so on, until a chain of k probable primes has been constructed. If
this chain is of record-breaking length, print out p and k , so that the program ProveP
can be applied to the members of the chain. The first chain you will find is 3, 7; the next
one is 5, 11, 23, 47. Show that if p begins a chain of length at least 4, with p > 5, then
necessarily p ≡ 29 (mod 30). For more on such chains, see D. H. Lehmer, On certain
chains of primes, Proc. London Math. Soc. (3) 14a (1965), 183–186.

By the method of primality proof employed here, we see that proving that p is prime
is no harder than factoring p−1. Other methods of proving primality have been proposed,
and some of these are significantly more efficient than our best factoring algorithms. Thus a
prime of 1000 digits can be proved to be prime, but the record for factoring hard composite
numbers stands below 200 digits. One of the methods currently in wide use is that of
Adleman, Pomerance and Rumely (the APR method); it depends on Gauss sums. A
method depending on elliptic curves, devised by Atkin and Morain, has achieved some
striking successes lately. For more information concerning proofs of primality, consult the
following papers.

L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing prime numbers from
composite numbers, Ann. of Math. (2) 117 (1983), 173–206.

A. O. L. Atkin and F. Morain, Elliptic curves and primality proving , Math. Comp. 61
(1993), 29–68.

J. D. Dixon, Factorization and primality tests, Amer. Math. Monthly. 91 (1984), 333–352.

Computational Laboratories in Number Theory 53



54 Computational Laboratories in Number Theory



LABORATORY 14
Square Roots Modulo p

New Programs: SqrtModP, SqrtDem

In discussing pseudoprime tests and primitive roots we have generated a circle of ideas that
we now harness to give a quick method for finding the roots of the quadratic congruence
x2 ≡ a (mod p). The algorithm involved is described in detail in §2.9 of NZM. Before
confronting the full algorithm, we consider two instructive examples.

1. If p ≡ 3 (mod 4) then the solutions of the congruence x2 ≡ a (mod p) are given
by x ≡ ±a(p+1)/4 (mod p). For example, suppose we wish to find solutions of the
congruence x2 ≡ 2 (mod 103). By using the program Power we find that 226 ≡ 38
(mod 103). Hence the desired solutions are ±38, as we may confirm by verifying that
382 ≡ 2 (mod 103). Use the program Power in this way to find the solutions of the
congruence x2 ≡ 7 (mod 103). What happens to this procedure if a is a quadratic
nonresidue of p? For example, what happens if you try to use this method to solve the
congruence x2 ≡ 3 (mod 103)? Explain why it is always the case that exactly one of a
and −a is a quadratic residue, if p is a prime, p ≡ 3 (mod 4), and a 6≡ 0 (mod p).

2. Suppose that z is a quadratic nonresidue of p , so that by Euler’s criterion z(p−1)/2 ≡ −1
(mod p). If p ≡ 1 (mod 4) then it follows that solutions of the congruence x2 ≡ −1
(mod p) are given by x ≡ ±z(p−1)/4 (mod p). However, to make use of this observation,
we need to find the quadratic nonresidue z . Rather than give a deterministic algorithm
for this, we simply try z at random, until a quadratic nonresidue is found. When z is
selected, we compute x ≡ z(p−1)/4 (mod p). Then either x2 ≡ −1 (mod p), in which
case we are done, or else x2 ≡ 1 (mod p) (i.e., x ≡ ±1 (mod p)), in which case we
start over with a new value of z . Since exactly half of the nonzero residue classes are
quadratic nonresidues, the expected number of such trials is 2. An algorithm of this
kind is referred to as a Monte Carlo algorithm, or as a probabilistic algorithm. Since the
quadratic nonresidues seem to be randomly distributed between 0 and p , we do not take
the trouble to use a random-number generator in selecting the values of z : It is enough to
try consecutive integers (skipping the perfect squares). For example, 224 ≡ −1 (mod 97),
and 324 ≡ −1 (mod 97), but 524 ≡ 22 (mod 97), and hence the solutions of x2 ≡ −1
(mod 97) are given by x ≡ ±22 (mod 97).

3. We now proceed to the general case. To see how one would find the solutions of the
congruence x2 ≡ 2 (mod 97), type sqrtdem 2 97 [Enter], and follow the prompts.
What happens if you type sqrtdem 5 97 [Enter]? To get the same result without all
the discussion, type sqrtmodp 2 97 [Enter].

4. Apply the program SqrtDem to various values of a with p = 223497217. What is the
power of 2 dividing p− 1?

Computational Laboratories in Number Theory 55



5. Suppose that p is prime and that p ≡ 2 (mod 3). Explain why a(2p−1)/3 is the sole
solution of the congruence x3 ≡ a (mod p). Use this principle and the program Power
to determine the unique root of the congruence x3 ≡ 2 (mod 101).

6. Suppose that p is prime and that p ≡ 1 (mod 3). Explain how a probabilistic algo-
rithm might be constructed to locate the roots of the congruence x3 ≡ 1 (mod p). (Hint:
One might try x ≡ z(p−1)/3 (mod p), where z is chosen randomly.) The congruence in
question has exactly 3 roots, say x0, x1, x2 . Since 1 is one of these roots, we may suppose
that x0 = 1. Explain why x2 ≡ x2

1 (mod p), and x1 ≡ x2
2 (mod p). Thus if one of

these roots can be found then so can the other. Use your method to find the solutions
of the congruence x3 ≡ 1 (mod 97). What is the probability that a given trial will be
successful?

7. For the programmer. Write a program that finds the roots of the congruence x3 ≡ a
(mod p). (Hint: Recall Problems 6 and 8 on p. 115 of the text.)

The algorithm we have used to take squareroots modulo p was invented by Dan Shanks
in 1972; he called it RESSOL, because it SOLves for RESidues. This algorithm is very
similar to one described much earlier by Tonelli. Other methods for taking squareroots
modulo p have been given by Lehmer (related to earlier work of Cipolla), by Peralta,
and by Adleman, Manders, and Miller. In addition, more general algorithms have been
devised for factoring a polynomial modulo p ; such an algorithm could be applied to the
polynomial x2 − a in order to find the squareroots of a modulo p . One such algorithm
has been proposed by Berlekamp, but the more recent method of Cantor and Zassenhaus
seems to be the method of choice. Among the various methods, it is interesting to note
that while Shanks’ method is somewhat slower if p− 1 is divisible by a high power of p ,
Peralta’ method, which depends on the arithmetic of polynomials (mod p), is faster in
this case. For more details one may consult the following papers.

L. Adleman, K. Manders, and G. Miller, On taking roots in finite fields, 18th IEEE Annual
Sympos. Foundations of Computer Science, Providence, RI, 1977.

E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970),
713–735.

D. G. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over finite
fields, Math. Comp. 36 (1981), 587–592.

D. H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number
Theory (W. J. LeVeque, ed.), Math. Assoc. Amer., 1969.

R. Peralta, A simple and fast probabilistic algorithm for computing square roots modulo
a prime number, IEEE Trans. Info. Thy. IT–32 (1986), 846–848.

M. Rabin, Probabilistic algorithms in finite fields, SIAM J. Comp. 9 (1980), 273–280.

D. Shanks, Five number-theoretic algorithms, Proceedings of the Second Manitoba Con-
ference on Numerical Mathematics, 1972, pp. 51–70.

56 Computational Laboratories in Number Theory



LABORATORY 15
Quadratic Residues

New Programs: JacobDem, JacobTab, Jacobi

As is discussed at the end of §3.3 of NZM, quadratic reciprocity provides a quick method of
calculating the Jacobi symbol. The program JacobDem demonstrates the process. In ad-
dition, values of the Jacobi symbol exhibit a number of interesting and important patterns.
These we can explore with the aid of the program JacobTab.

1. Use the program JacobDem to witness the calculation of the Jacobi symbol. Try
typing jacobdem [Enter] and follow the prompts, or type jacobdem 1234567 7654321
[Enter]. To evaluate the Jacobi symbol without witnessing the calculation, type jacobi
1234567 7654321 [Enter].

2. Use the program JacobTab to view a table of the values of the Jacobi symbol. For
p = 23, what are the quadratic residues?

3. For 1 ≤ a ≤ p − 2, the pair
(
a
p

)
,

(
a+1

p

)
takes on the values (1, 1), (1,−1), (−1, 1),

(−1,−1). Using JacobTab with p = 29, classify the a according to which pair is generated.
How many times does each configuration occur? Repeat this with p = 37, p = 41.
Formulate a conjecture concerning the general situation when p ≡ 1 (mod 4). Now try
some primes ≡ 3 (mod 4), say p = 23, p = 31, p = 43. Again, formulate a conjecture.
Problem 18 at the end of §3.3 of NZM is relevant here.

4. Using JacobTab, evaluate the sum

p∑
a=1

(a(a + 1)
p

)
for several primes, say p = 11, p = 13, p = 17, p = 19. Formulate a conjecture concerning
the value of this sum. Note Problem 17 at the end of §3.3 of NZM.

5. Let δ = ±1, ε = ±1. The a for which
(
a
p

)
= δ ,

(
a+1

p

)
= ε are counted by the expression

1
4

p−2∑
a=1

(
1 + δ

(a

p

))(
1 + ε

(a + 1
p

))
.

Explain why this is

= −1
4

(
1 + ε

(−1
p

))
− 1

4
(1 + δ) +

1
4

p∑
a=1

(
1 + δ

(a

p

))(
1 + ε

(a + 1
p

))
,

Computational Laboratories in Number Theory 57



and why this in turn is

=
1
4

(
p− 2− δ − ε

(−1
p

))
+

δε

4

p∑
a=1

(a(a + 1)
p

)
.

This identity establishes a relationship between the conjectures you made in the two pre-
ceding problems. Are your conjectures equivalent?

6. Using JacobTab, evaluate the sum

(p−1)/2∑
a=1

(a

p

)
for several odd prime numbers p , say p = 11, p = 13, p = 17, p = 19. Explain why this
sum must vanish if p ≡ 1 (mod 4). (Hint: (a

p ) = (−a
p ).) Explain why this sum never

vanishes if p ≡ 3 (mod 4). (Hint: What is this sum (mod 2)?) When p ≡ 3 (mod 4),
is there anything notable about the sign of this sum? Examine some further cases, and
formulate a conjecture.

In 1839, Dirichlet proved an important class number formula, a special case of which
asserts that if p ≡ 3 (mod 4) and p > 3 then

(p−1)/2∑
a=1

(a

p

)
=

(
2−

(2
p

))
H(−p).

Here H(−p) is the number of inequivalent classes of quadratic forms of discriminant −p ,
as defined in §3.5 of NZM. From this (deep) result we see that the sum on the left hand
side above is always positive when p ≡ 3 (mod 4). For an exposition of Dirichlet’s
class number formula, see §1 and §9 of H. Davenport, Multiplicative Number Theory, 2nd
Edition, Springer-Verlag, New York, 1980, especially (8) on p. 9 and (15) on p. 49.

7. Using JacobTab as an aid, test the following assertion: For every prime number p ≥ 11,
the interval [1, 10] contains two consecutive quadratic residues. Is the same true of the
interval [1, 9]? Is there a similarly uniform upper bound for the first occurence of three
consecutive quadratic residues? Explore. The answer, which will come as a surprise, is
given by D. H. Lehmer and E. Lehmer, On runs of residues, Proc. Amer. Math. Soc. 13
(1962), 102–106.

8. Let n2(p) denote the least positive quadratic nonresidue of p . Using JacobTab, de-
termine the value of n2(p) for 25 odd primes chosen at random. What values does n2(p)
take on, and how many times? Is there any reason why the number n2(p) should always
be prime?

Erdős combined quadratic reciprocity and the prime number theorem for arithmetic
progressions to show that n2(p) = 2 for asymptotically 1/2 of the primes, that n2(p) = 3

58 Computational Laboratories in Number Theory



for asymptotically 1/4 of the primes, that n2(p) = 5 for asymptotically 1/8 of the primes,
that n2(p) = 7 for asymptotically 1/16 of the primes, and so on.

9. Let p2(p) denote the least prime quadratic residue of p . Using JacobTab, determine
the value of p2(p) for 25 randomly chosen odd primes p . What values are taken on, and
how frequently? What is p2(163)?

Computational Laboratories in Number Theory 59



60 Computational Laboratories in Number Theory



LABORATORY 16
Binary Quadratic Forms

New Programs: ClaNoTab, QFormTab, Reduce

Whether a number n can be expressed as a sum of two squares can be elegantly char-
acterized in terms of the canonic factorization of n into prime powers (recall Theorem
2.15 of NZM). It is therefore natural to ask whether something similar happens with other
binary quadratic forms. The answer, as discussed in §3.4–3.7 of NZM, is generally less
satisfactory.

1. What is the discriminant of the form f(x, y) = 3508x2 + 11259xy + 9034y2 ? Is this
form definite or indefinite? (Recall Theorem 3.11 of NZM.) Type reduce 3508 11259
9034 [Enter] to find a reduced form that is equivalent to f(x, y). Use the program
QFormTab to view a list of all the reduced quadratic forms of this discriminant. Describe,
in terms of the arithmetic progressions that they fall in, the primes represented by this
form. (Suggestion: Use Corollary 3.14 and Theorem 3.17 of NZM.)

2. What is the discriminant of the form f(x, y) = 1039x2 + 11223xy + 30307y2 ? Is this
form definite or indefinite? Using the program QFormTab,construct a list of all the re-
duced quadratic forms of this discriminant. Describe, in terms of arithmetic progressions
that they fall in, the primes represented by this form. Type reduce 1039 11223 30307
[Enter] to find a reduced form g(x, y) that is equivalent to the given form. From the
information displayed, find values of x and y such that g(x, y) = 1039. Now type reduce
[Enter], without entering the coefficients on the command line. Then enter the coeffi-
cients in response to the prompts. This gives you an environment in which forms may be
manipulated. If you type r then the bottom form in the table is reduced, the steps of the
reduction are displayed, with the matrix that takes f to g . To view the inverse matrix,
that takes g to f , say M : g → f , type m. To express the original first coefficient 1039
properly by g , one takes x = m11 , y = m21 where M = [mij ] (recall the formulæ (3.7)
in the text). In this environment, enter

a =123456789876543401,
b =31971493083730684,
c =2069907153395965,

and type r to reduce this form. In this way, discover a representation of the prime a as a
sum of two squares.

The prime p = 123456757 is ≡ 1 (mod 4), and hence can be written as a sum of
two squares. In order to find such a representation, we first construct a quadratic form
f(x, y) = ax2 + bxy + cy2 with a = p and discriminant d = −4. That is, we must find
b and c so that b2 − 4pc = −4. By using SqrtModP, we find that x2 ≡ −4 (mod p)
where x = 51035038. We need b to satisfy b2 ≡ −4 (mod 4p). Thus we may take b ≡ x

Computational Laboratories in Number Theory 61



(mod p). We also need b to be even, so that b2 ≡ −4 (mod 4). Since x is even, it
suffices to take b = x . Then c = (b2 + 4)/(4p) = 5274266. (If such a calculation is beyond
the capabilities of your pocket calculator, you may perform the arithmetic in the UBASIC
environment. From the UBASIC prompt, type print (51035038^2 + 4)\(4*123456757)
[Enter]. Here the \ is the UBASIC command for integer division.) Next we use the
(Turbo Pascal) program Reduce to reduce this quadratic form. The only reduced form of
discriminant −4 is x2 + y2 , and hence not only is f(x, y) equivalent to this form, but we
find the value of x and y that we should take to give a proper representation of a . From
the values displayed, we find that 123456757 = 102812 + 42142 .

3. Use the programs SqrtModP and Reduce, as described above, to find a proper repre-
sentation of the prime 987654337 as a sum of two squares. (This is similar to Example 3
in §3.6 of NZM.)

4. The number 20193797 is a product of two primes ≡ 1 (mod 4). Hence 20193797
can be expressed as a sum of two squares. Use the program Factor to find these prime
factors, say 20193797 = p1p2 . Use SqrtModP to find xi such that x2

i ≡ −4 (mod pi),
for i = 1, 2. Then use CRT to find numbers b such that b ≡ ±x1 (mod p1), b ≡ ±x2

(mod p2), and b ≡ 0 (mod 2). Note that because of the various possible choices of the
signs, there are 4 such numbers b . For each such b , put c = (b2 + 4)/(4a). Reduce the 4
quadratic forms to obtain representations of 20193797 as a sum of two squares. How many
distinct ordered pairs (x, y) of positive integers do you obtain? Compare your findings
with Theorem 3.22 of NZM.

5. Use the program QFormTab to view the reduced quadratic forms of discriminant −20.
How many such forms are there? The prime number 666666667 is properly represented by
the form 666666667x2 + 200000xy + 15y2 , whose discriminant is −20. Reduce this form,
to determine a representation of 666666667 by one of the reduced forms. (Problems 5 and
10 at the end of §3.6 of NZM are relevant here.)

6. The program ClaNoTab generates a table of the class numbers of binary quadratic
forms of negative discriminant. This program operates by the straightforward approach
of noting the value of b2 − 4ac whenever −a < b ≤ a ≤ c or 0 ≤ b ≤ a = c , for each
a , a = 1, 2, . . . , 57. This gives a complete count of the reduced quadratic forms for each
discriminant d in the interval −10000 ≤ d < 0. Since the computer must consider a large
number of triples (roughly 106 of them), the program takes some time to generate the
table. Scroll down through the table, looking for d for which the class number h(d) is
1. How many such d do you find? Gauss found these d , and conjectured that there are
no more. In 1934 it was proved that there could be at most one more such d . Finally
in 1952, Heegner solved the Gauss class number problem by showing that there are no
further d < 0 for which the class number is 1. (There are lots of d > 0 for which the class
number is 1, and it is conjectured that there are infinitely many, though this has not yet
been proved.) When d < 0, the numbers h(d) grow irregularly with |d| . How does h(d)
compare with

√
−d ?

62 Computational Laboratories in Number Theory



It is known that if d < 0 then h(d) = O(
√
−d log−d), and also that if ε > 0 then

there is a D0(ε) < 0 such that if d < D0(ε) then h(d) > d1/2−ε . Moreover, it is known that
if the Generalized Riemann Hypothesis is true then h(d)/

√
−d lies between c/ log log−d

and c log log−d .

7. If a , b , and c are large (in absolute value), how likely is it that d = b2 − 4ac is
small? Try some triples in the environment of the program Reduce. Suppose that a =
111111222222333333 and that c = 333333222222111111. How many b ’s are there for
which |d| < 1018 ?

Each form of negative discriminant is equivalent to a unique reduced form. (Recall
Theorem 3.25 of NZM.) In particular, the reduced forms of given negative discriminant
d are mutually inequivalent. Hence the number H(d) of equivalence classes of positive
definite binary quadratic forms of discriminant d , d < 0, is equal to the number of reduced
positive definite forms of discriminant d . For d > 0 our reduction process is incomplete,
and reduced forms may be equivalent. Thus for d > 0 the number of reduced forms is
only an upper bound for the number H(d) of equivalence classes.

8. Using the program QFormTab, construct a list of the reduced quadratic forms of
discriminant 5. In the environment of Reduce, take a = 1, b = 1, c = −1. Type s,
and then type i. Deduce that the two reduced forms are equivalent, H(5) = 1, and give
the matrix that takes one to the other. Complete the following statement: “A prime p is
represented by the form x2 + xy − y2 if and only if . . . .” (This is similar to Example 2
in §3.5 of NZM.)

9. Use the program QFormTab to construct a list of reduced forms of discriminant 12.
Show that x2−3y2 = −1 has no solution because it has no solution as a congruence modulo
3. Deduce that the two reduced forms are inequivalent, and hence that H(12) = 2.

10. The form f(x, y) = 17x2 + 8xy + y2 has discriminant −4, and hence is equivalent to
g(x, y) = x2 + y2 . In the environment of Reduce, enter a = 1, b = 0, c = 1. By typing
a sequence of s’s, t’s, and i’s, try to get to f . If you are unsuccessful, and need a hint,
enter a = 17, b = 8, c = 1, and type r. This gives the sequence that takes f to g . Now
go backwards.

11. In the environment of Reduce, enter a = 1, b = 1, c = 1. Type s twice. Note that
you are back at the original form, but that the matrix is −I , not I . Thus −I takes the
form to itself. This is called an automorph of the form. Type several characters, each one
being one of s t i, and then type r. What matrix M now takes the form to itself? By
experimenting in this way, find all the automorphs of this form. (There are 6 of them
altogether, including I .) Can you prove that your list is complete? (The relevant matrices
are found in the proof of Theorem 3.26 of NZM.)

12. Consider a matrix M , written as a product in which each factor is one of the matrices
S , T , or T−1 . If there are many factors, then the elements of M are likely to be large.
In the environment of Reduce, type several characters, each one being one of s t i. How
large an element mij can you obtain in at most 20 keystrokes?

Computational Laboratories in Number Theory 63



64 Computational Laboratories in Number Theory



LABORATORY 17
Arithmetic Functions

New Programs: ArFcnTab, Pi

A function is called an arithmetic function if its domain is the set of positive integers
(or perhaps the set Z of all integers). Among the most important and useful arithmetic
functions are the following: The number ω(n) of distinct primes dividing n , ω(n) =∑

p|n 1. The number Ω(n) of primes dividing n , counting multiplicity, Ω(n) =
∑

pa‖n a .
The Möbius µ-function, which is defined to be (−1)Ω(n) if n is squarefree, and 0 otherwise.
The divisor function d(n), which is the number of positive divisors of n , d(n) =

∑
d|n 1.

By the Chinese Remainder Theorem, we may show that d(n) =
∏

pk‖n(k + 1). The Euler
φ-function, which counts the number of reduced residues modulo n . By using the Chinese
Remainder Theorem we know that φ(n) = n

∏
p|n(1− 1/p). The σ -function is the sum of

the positive divisors of n , σ(n) =
∑

d|n d . By using the Chinese Remainder Theorem we
may show that σ(n) = n

∏
pa‖n(1− 1/pa+1)/(1− 1/p).

1. The program ArFcnTab provides a table of the six arithmetic functions defined above,
for 1 ≤ n ≤ 109 . Type arfcntab [Enter]. You may use the PgUp and PgDn keys to page
up or page down through the table. By typing j and then entering a number, you may
jump to a different part of the table. When you are done using the table, type Esc to exit.
By scrolling down through the table, make a list of those n ≤ 200 for which d(n) is odd.
Formulate a conjecture. Can you prove it? (Theorem 4.3 of NZM is usefl here.)

2. For 1 ≤ n ≤ 10, compute a table of values of the function
∑

d|n µ(d). Choose an n

at random, 1 ≤ n ≤ 109 . Use the program Factor to factor n , and then list the divisors
of n . For each d dividing n , use the factorization of d to determine the value of µ(d),
and confirm that ArFcnTab provides the same values. For this n , evaluate

∑
d|n µ(d).

Formulate a conjecture concerning the values of this sum. (See Theorem 4.7 of NZM.)

3. For 1 ≤ n ≤ 10, construct a table of the values of
∑

d|n φ(d). Choose a large n at
random, 1 ≤ n ≤ 109 . Use Factor to factor n , and construct a list of the divisors of n .
Use ArFcnTab to provide the values of φ(d) for these divisors, and hence evaluate the sum∑

d|n φ(d). Formulate a conjecture regarding the values of this sum. (See Theorem 4.6 of
NZM.)

4. Make a list of those n , 1 ≤ n ≤ 50, for which ω(n) = Ω(n). What do you notice about
the prime factorizations of these n? Describe these n in some other way.

5. Using ArFcnTab, look for small values of ω(n). Other than ω(1) = 0, what is the
smallest value you find? When does it take this small value? Does it take this value
infinitely many times? Why? Now look for large values of ω(n). Make a list of those n ,
1 ≤ n ≤ 500, for which ω(n) is larger than any previous values. That is, if 1 ≤ m < n then

Computational Laboratories in Number Theory 65



ω(m) < ω(n). Give the prime factorization of each of these n . Formulate a conjecture
regarding these n . Can you prove your conjecture? (See Theorem 8.30 in NZM.)

6. Proceed as in the preceding problem, but with ω(n) replaced by Ω(n). (Problem 10
at the end of §8.3 is relevant here.)

7. Construct a list of those n , 1 ≤ n ≤ 100 for which φ(n) is larger than any preceding
value. That is, if 1 ≤ m < n then φ(m) < φ(n). Formulate a conjecture regarding these
n . What information would you need concerning the distribution of prime numbers in
order to prove your conjecture?

8. Construct a table of those n , 1 ≤ n ≤ 50, for which φ(n)/n is smaller than any
preceding value. That is, if 1 ≤ m < n then φ(m)/m > φ(n)/n . Formulate a conjecture
concerning this set of integers n . Can you prove your conjecture? (Problem 15 at the end
of §8.3 of NZM is relevant here.)

9. Construct a table of the values of
∑

d2|n µ(d), for 1 ≤ n ≤ 20. Formulate a conjecture
concerning the values taken by this sum. Can you prove your conjecture? (See the proof
of Theorem 8.25 in NZM.)

10. Construct a table of the values of 2ω(n) , of d(n), and of 2Ω(n) , for 1 ≤ n ≤ 20.
Formulate a conjecture concerning the relative sizes of these three functions. Can you
prove your conjecture? (See the discussion in the middle of p. 395 of NZM.)

11. A number n is called perfect if σ(n) = 2n . That is, n is the sum of its proper divisors.
What perfect numbers do you find in the interval 1 ≤ n ≤ 50? It has long been conjectured
that there are no odd perfect numbers—indeed, this is very probably the oldest unsolved
problem in all of mathematics. By examining the values provided by ArFcnTab, confirm
that the numbers 496, 8128, and 33550336 are also perfect. Factor these numbers, and
note that their prime decompositions exhibit a common pattern. Can you show that all
even perfect numbers are of this shape?

12. The values of some of our six arithmetic functions tend to be correlated. For example,
ω(n) tends to be large (but is not always large) when Ω(n) is large. In the case of φ(n)
and σ(n), the correlation is negative: σ(n) tends to be large when φ(n) is small. To
investigate this principle in a quantitative form, tabulate the values of φ(n)σ(n)/n2 for
1 ≤ n ≤ 10, and also for several large values of n . Do all the values observed lie in the
interval [6/π2, 1]? If so, why should they?

13. Although d(n) takes on some large values for large n , these values are small compared
with fractional powers of n . More precisely, for any δ > 0 there is a constant Cδ such that
d(n) ≤ Cδn

δ for all positive integers n . Tabulate the values of d(n)/
√

n for 1 ≤ n ≤ 15.
What is the largest value observed? This is the unique maximum of this function. The
unique maximum of d(n)/n1/3 is attained at n = 2520. What is this maximum value?
The maximum of d(n)/n1/4 is attained at n = 21621600. What is this maximum? The

66 Computational Laboratories in Number Theory



maximum of d(n)/n1/5 occurs at n = 6064949221531200. What is this maximum? Here
n > 109 , so you are now beyond the range of ArFcnTab. To calculate d(n) you must factor
n and use the formula. The maximum of d(n)/n1/6 occurs at n = 26 ·34 ·53 ·72 ·112 ·13 ·17 ·
19 ·23 ·29 ·31 ·37 ·41 ·43 ·47 ·53 ·59 ·61. What is this maximum? To understand how these n
are found, see the discussion leading to (8.54) on pp. 395–396 of NZM. This analysis goes
back to S. Ramanujan, Highly Composite Numbers, Proc. London Math. Soc. 2 1915, 347–
409; Collected Papers pp. 78–128. The set of n for which d(n) assumes a record-breaking
value is not so easy to describe completely, although Ramanujan determined many of its
properties.

14. One might expect that the Möbius function takes the values +1 and −1 with roughly
equal frequency. To test this hypothesis, put M(x) =

∑
1≤n≤x µ(n), and tabulate M(x)

for integral values of x ≤ 100. Here only squarefree numbers are being counted, so
it is natural to consider also L(x) =

∑
1≤n≤x(−1)Ω(n) . Form a similar table of this

function. How do the values of these functions compare with
√

x ? Here the numerical
evidence may lead you to formulate false conjectures. It was conjectured by Mertens that
|M(x)| ≤

√
x for all x ≥ 1. Although it is now believed that lim supM(x)/

√
x = +∞ , the

first disprove of Mertens’ conjecture was found only recently (A. M. Odlyzko and H. J. J. te
Riele, Disproof of the Mertens Conjecture, J. Reine Angew. Math. 357 (1985), 138–160).
The argument disproves Mertens’ conjecture by showing that lim supM(x)/

√
x > 1.06.

Concerning L(x), Pólya conjectured that L(x) < 0 for all x ≥ 2. This was disproved
by C. B. Haselgrove, A disproof of a conjecture of Pólya, Mathematika 5 (1958), 141–
145, and later R. Sherman Lehman, On Liouville’s function, Math. Comp. 14 (1960),
311–320 showed more explicitly that L(906180359) = 1. This is not necessarily the least
counterexample, but it is known that Pólya’s conjecture is true for all x ≤ 6 · 106 .

15. The program Pi calculates the number π(x) of primes not exceeding x . The program
operates by first sieving to construct a table of primes not exceeding 31607. Since the
next prime after this, namely 31621, is larger than

√
109 , it follows that primes up to 109

can be determined by using these small primes for sieving. To limit the use of memory,
the primes are constructed in intervals of length 104 , one interval at a time, until the limit
x is reached. The program is restricted to x ≤ 106 , because the running time (which is
roughly comparable to x) is too great for larger x . For x = 10k , 1 ≤ k ≤ 6, how does
π(x) compare with x/ log x ? A better approximation is given by

lix =
∫ x

2

du

log u
,

but numerical values of this integral are not so easy to compute.

Faster methods of computing π(x) are discussed in the following papers.

J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing π(x) : The Meissel-Lehmer
method, Math. Comp. 44 (1985), 537–560.

Computational Laboratories in Number Theory 67



J. C. Lagarias and A. M. Odlyzko, New algorithms for computing π(x) , Number Theory:
New York 1982, (D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn and M. B. Nathanson,
eds.), pp. 176–193; Lecture Notes in Mathematics 1052, Springer-Verlag (Berlin), 1984.

J. C. Lagarias and A. M. Odlyzko, Computing π(x) : an analytic method, J. Algorithms
8 (1987), 173–191.

16. G. H. Hardy and S. Ramanujan proved that for most integers n , both ω(n) and Ω(n)
are approximately log log n . Their proof was complicated; the more elegant method used
in proving Theorem 8.32 and Corollary 8.33 of NZM was found later by P. Turán. This
has an interesting consequence: Since 2ω(n) ≤ d(n) ≤ 2Ω(n) for all n , it follows that for
most n , (log n)c−ε < d(n) < (log n)c+ε where c = log 2 = 0.693 . . . . Using ArFcnTab,
compute the averages of ω(n) and Ω(n) in the intervals (10k−50, 10k] for 1 ≤ k ≤ 9, and
compare these averages with log log 10k . (Remember, as always to use natural logarithms,
i.e., logs to the base e .)

17. By borrowing code from the program Pi, construct a program to count the number
π2(x) of twin primes not exceeding x . Does this function increase at a regular rate? For
interesting information regarding the distribution of prime numbers, see Don Zagier, The
First 50 Million Prime Numbers, Math. Intell. 1 (1978), 7–19.

68 Computational Laboratories in Number Theory


