
A Supplement to

An Introduction to The Theory of Numbers

Fifth Edition

by

Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

John Wiley & Sons, Inc.

Publication history:

First Edition December, 1992
Second Edition September, 1994

c© Copyright 1992, 1994 by Hugh L. Montgomery

Preface to the Second Edition

Throughout its long history, number theory has been characterized by discovery based
upon empirically observed numerical patterns. By using a computer with appropriate
software, the student can now inspect data that is both more extensive and more accurate
than in former times. With this in mind, a set of 70 programs has been prepared for
use in the classroom as an aid to instruction, for use by students in individual study and
exploration, and also in structured laboratories. These programs are written in Borland’s
Turbo Pascal version 7.0, running under DOS on IBM PC-compatible machines. Both
the source code and the compiled code are provided; these programs may be freely copied
and distributed to students using the text. Some of these programs, such as FacTab and
PowerTab, display data in which patterns may be detected. Other programs, such as
EuAlDem1 and PwrDem1a, offer demonstration of specific algorithms that are employed
in computations. Finally, a third class of programs, typified by Factor and GCD, perform
useful calculations on demand. The programs relevant to a particular section are listed in
the table Programs by Section. Before embarking on a section, the instructor may wish to
experiment with these programs, in order to become familiar with their operation.

It was intended that the algorithms employed in the accompanying programs should
be limited to those discussed in the text, so that the student would be in a position to
understand exactly what each program is does. As the programs developed, a few excep-
tions to this rule crept in, as follows: In the program Ind, for calculating the index (i.e.,
discrete logarithm),of a number modulo p a method of Shanks is used. This is explained
in Laboratory 12, in the documentation of the program, and also in the demonstration
provided by the program IndDem. In the program ProveP, which is based on Problem
39 at the end of §2.8, an extra device invented by H. C. Williams has been added. For
details see the description of this program in the Reference Guide to Turbo Pascal Pro-
grams, in this manual. The scheme for calculating the Lucas functions, described in §4.4,
has not been followed, because the one sidestep formula involves division by 2, which is
problematic when the calculations are being done modulo m with m even. For an account
of the method actually used, see the description of the program Lucas in the Reference
Guide to Turbo Pascal Programs. The disadvantage of using only those algorithms found
in the text is that in some cases faster execution could have been achieved by using some
other algorithm. This particularly the case with programs that involve factoring (the
quadratic sieve method is faster), proving primality (the Atkin-Morain and the Adleman-
Rumely methods are faster), or locating the roots of polynomial congruences modulo p
(the Cantor-Zassenhaus method is much faster).

iii

If your students have experience in programming, you may wish to make the source
code of these programs available to them. By examining the source code, a student may
see in detail how a particular algorithm has been implemented. On the other hand, an
effort has been made to design programs whose operation is so natural that very little
time will be needed to learn how to use them. Thus students unfamiliar with computers
or programming should have no difficulty.

In the accompanying programs, an integer variable n in is usually declared to be of
type integer if |n| ≤ 30,000, or longint if |n| ≤ 109 , or of type comp if |n| ≤ 1018 .
No provisions are made for integers larger than this, a disadvantage in some contexts.
The advantage is that one avoids the extra commands and variable types that a multiple
precision arithmetic package would use.

Some of the laboratories assume that the student has access not only to the Turbo
Pascal programs, but also to UBASIC, a wonderful BASIC interpreter designed by Yuji
Kida. For more details see Further Reseources.

If you encounter any problem with the operation of the Turbo Pascal programs, or
have suggestions for their improvement, please communicate your comments to me at
hlm@math.lsa.umich.edu, or by snail mail. CLINT users who wish to be kept abreast of
future revisions should ask me to add their name to the list of CLINTERS.

These computational laboratories are still in an experimental stage. More labs and
programs are needed. In addition, the labs may be too long, or too difficult, or may ask
the wrong questions. Any thoughts you have would be appreciated. You may want to
compose your own, but it is hoped that the ones here at least offer inspiration. If you want
to edit these labs to customize them for your own use, you can obtain the .tex files that
create them by ftp–see the Further Resources for details.

It is a pleasure to thank A. O. L. Atkin, J. D. Brillhart, H. Flanders, D. E. G. Malm,
C. Pomerance, J. L. Selfridge, R. C. Vaughan, and S. S. Wagstaff Jr. for their help with
algorithmic and technical issues.

Hugh L. Montgomery
6 September, 1994

iv

Contents

Preface iii

Programs by Type vi

Programs by Section viii

Warning ix

Acquisition ix

Laboratories 1

1 GCDs & The Euclidean Algorithm 1

2 Factorization and Prime Numbers 7

3 Congruences 11

4 Sums of Two Squares 13

5 Solutions of Congruences & Binomial Coefficients 17

6 Linear Congruences & The Chinese Remainder Theorem 21

7 Powering Algorithms & Primality Testing 25

8 Factoring Strategies 29

9 RSA Public Key Cryptography 35

10 Hensel’s Lemma 39

11 Power Residues & Primitive Roots 41

12 Indices — The discrete Logarithm 45

13 Proving Primality 51

14 Square Roots Modulo p 55

15 Quadratic Residues 57

16 Binary Quadratic Forms 61

17 Arithmetic Functions 65

Reference Guide to Turbo Pascal Programs 69

Turbo Pascal Programming Resources 99

Programs for the HP–28S 107

Further Resources 119

v

Programs by Type

CALCULATIONS

Carmichael function car(m) car [m]
Chinese Remainder Theorem crt [a1 m1 a2 m2]
determinant modulo m detmodm
discrete logarithm base g of a modulo p ind [g a p]
factor n

by trial division factor [n]
by p− 1 method p-1 [n [a]]
by rho method rho [n [c]]

find next prime getnextp [x]
greatest common divisor gcd [b c]
index base g of a modulo p ind [g a p]
Jacobi symbol

(
P
Q

)
jacobi [P Q]

Lucas functions Un, Vn modulo m lucas [n [a b] m]
multiply residue classes modulo m mult [a b m]
order of a modulo m order [a m [c]]
phi function φ(n) phi [n]
π(x) pi [x]
power ak modulo m power [a k m]
primitive root of prime p primroot [p [a]]
prove primality of p provep [p]
rational approximation to decimal rat [x]
reduce ax2 + bxy + cy2 reduce a b c
represent n as sum of s k -th powers sumspwrs [n s k]
roots of

ax ≡ b (mod m) lincon [a b m]
f(x) ≡ 0 (mod pj) hensel
P (x) ≡ 0 (mod m) polysolv
x2 ≡ a (mod p) sqrt [a p]
Ax = b in integers simlinde

square root modulo p sqrt [a p]
strong pseudoprime test of m base a spsp [[a] m]

DEMONSTRATIONS

Chinese Remainder Theorem crtdem
determinants modulo m detdem
discrete logarithm base g of a modulo p inddem [g a p]
Euclidean algorithm eualdem1, eualdem2, eualdem3

vi

factorization
by p− 1 method p-1dem
by rho method rhodem [n]

greatest common divisors fastgcd, slowgcd
(see also Euclidean algorithm)

heapsort algorithm hsortdem
index base g of a modulo p inddem [g a p]
Jacobi symbol

(
P
Q

)
jacobdem [P Q]

linear congruence ax ≡ b (mod m) lncndem [a b m]
Lucas functions lucasdem [n [a b] m]
multiplication of residue classes multdem1, multdem2, multdem3
order of a modulo m orderdem [a m [c]]
powering algorithm pwrdem1a [a k m],

pwrdem1b [a k m],
pwrdem2 [a k m]

RSA encryption rsa
square root modulo p sqrtdem [a p]
strong pseudoprime test of m base a spspdem [[a] m]

TABLES

arithmetic functions ω(n),Ω(n), µ(n), d(n), φ(n), σ(n) arfcntab
binary quadratic forms

reduced forms qformtab
forms equivalent to f(x, y) reduce

binomial coefficients modulo m pascalst
class numbers clanotab
congruential arithmetic cngartab
discrete logarithms indtab
factorials modulo m fctrltab
Farey fractions fareytab
greatest common divisors gcdtab
indices indtab
intersection of arithmetic progressions intaptab
Jacobi symbols jacobtab
least prime factor factab
linear combinations lncomtab
Lucas functions lucastab
Pascal’s triangle modulo m pascalst
powers of a modulo m powertab
representations as sums of powers wrg1tab, wrg2tab, wrgcntab
roots of

f(x) ≡ 0 (mod pj) hensel
P (x) ≡ 0 (mod m) polysolv

vii

Programs by Section

1.2 SlowGCD, FastGCD, GCD, EuAlDem1, EuAlDem2, EuAlDem3,
LnComTAb, GCDTab

1.3 FacTab, Factor, Pi, GetNextP
1.4 PascalsT
2.1 CngArTab, FctrlTab, PowerTab, Phi, Mult, Power, DetModM,

DetDem, SumsPwrs, Wrg1Tab
2.2 PolySolv, LinCon, LnCnDem
2.3 IntAPTab, CRT, CRTDem, Phi
2.4 MultDem1, MultDem2, MultDem3, PwrDem1a, PwrDem1b,

PwrDem2, SPsP, SPsPDem, Rho, RhoDem, P-1, P-1Dem
2.5 RSA
2.6 Hensel
2.7 PolySolv
2.8 Order, OrderDem, PrimRoot, Ind, IndTab, IndDem, HSortDem,

ProveP, Car
2.9 SqrtModP, SqrtDem
2.10 CngArTab
3.1 Jacobi, JacobTab
3.2 Jacobi, JacobTab
3.3 JacobDem
3.5 QFormTab, Reduce
3.6 Reduce
3.7 ClaNoTab
4.2 ArFcnTab
4.4 Lucas, LucasTab, LucasDem
5.1 SimLinDE
5.2 SimLinDE
6.1 FareyTab
7.1 Rat

viii

Warning

The accompanying programs are intended for educational use only. We make no warranty,
express or implied, that the programs are free of error, that they meet any particular
standard of merchantability, or that the values they yield are accurate. Some of these
programs have been put through strenuous tests, but many others have been checked only
in the most casual manner. In order to extend the range of integers that may be dealt
with, most of these programs use floating-point real arithmetic in their execution. Thus
the accuracy of the results cannot be guaranteed, and consequently these programs should
not be used for serious mathematical research. Any such use would be entirely at the
user’s own risk. The author disclaims all liability for direct, incidental, or consequential
damages resulting from your use of these programs.

Acquisition

This manual and the accompanying programs are available over the internet by using the
file transfer program ftp. For detailed instructions see the Further Resources at the end
of this manual, and particularly the entry relating to CLINT. If you do not have access to
ftp, then this material will be sent, free of charge, upon request. Direct your inquiry to

Mathematics Editor
John Wiley & Sons
605 Third Avenue
New York, NY 10158-0012

ix

x Computational Laboratories in Number Theory

