Math 115

Professor K. A. Ribet
Spring Semester, 1998

First Midterm Exam

February 25, 1998

Instructions: Answer question \#2 and three other questions.
1 (6 points). Find all solutions to the congruence $x^{2} \equiv p \bmod p^{2}$ when p is a prime number.
2 (9 points). Using the equation $7 \cdot 529-3 \cdot 1234=1$, find an integer x which satisfies the two congruences $x \equiv\left\{\begin{array}{ll}123 & \bmod 529 \\ 321 & \bmod 1234\end{array}\right.$ and an integer y such that $7 y \equiv 1 \bmod 1234$. (No need to simplify.)

3 (7 points). Suppose that p is a prime number. Which of the $p+2$ numbers $\binom{p+1}{k}$ $(0 \leq k \leq p+1)$ are divisible by p ? [Example: The seven binomial coefficients $\binom{6}{k}$ are 1,6 , $15,20,15,6,1$; the middle three are divisible by 5 .]

4 (7 points). Let p be a prime and let n be a non-negative integer. Suppose that a is an integer prime to p. Show that $b:=a^{p^{n}}$ satisfies $b \equiv a \bmod p$ and $b^{p-1} \equiv 1 \bmod p^{n+1}$.

5 (6 points). Show that $n^{4}+n^{2}+1$ is composite for all $n \geq 2$.

Last Midterm Exam

April 8, 1998
198 The numbers 257 and 661 are prime.
1 (5 points). Find the number of square roots of 9 modulo $3 \cdot 11^{2} \cdot 13^{3}$.
2 (5 points). Determine whether or not 116 is a square modulo 661 .
3 (5 points). Determine whether or not 116 is a cube modulo 661 .
4 (5 points). Calculate the number of primitive roots modulo 257^{2}.
5 (7 points). Express $-\frac{15}{47}$ as a continued fraction.

6 (8 points). Let p be a prime number dividing $x^{2}+1$, where x is an even integer. Show that $p \equiv 1 \bmod 4$ and that p is prime to x. Deduce that there are an infinite number of primes congruent to $1 \bmod 4$.

Final Exam

1 The numbers 257 and 661 are prime.
1 (6 points). Find a positive integer n such that $n / 3$ is a perfect cube, $n / 4$ is a perfect fourth power, and $n / 5$ is a perfect fifth power.

2 (5 points). Prove that there are no whole number solutions to the equation $x^{2}-15 y^{2}=31$.
3 (5 points). Find the number of solutions to the congruence $x^{2} \equiv 9 \bmod 2^{3} \cdot 11^{2}$.
4 (7 points). Which positive integers m have the property that there a primitive root mod m ? (Summarize what we know about this question, and why we know it. Your answer should be clear enough that one could use it to decide immediately if there is a primitive root modulo $(257)^{2}, 4 \cdot 661,257 \cdot 661, \ldots$)

5 (6 points). Fermat showed that $2^{37}-1$ is composite by finding a prime factor p of $2^{37}-1$ which lies between 200 and 300. Using your knowledge of number theory, deduce the value of p.

6 (7 points). The continued fraction expansion of $\sqrt{5}$ is $\langle 2,4,4, \ldots\rangle$. If

$$
\langle 2, \underbrace{4,4, \ldots, 4}_{994^{\prime} \mathrm{s}}\rangle=h / k
$$

(in lowest terms), calculate $h^{2}-5 k^{2}$.
7 (5 points). Prove that there are an infinite number of primes congruent to $3 \bmod 4$
8 (6 points). Suppose that $p=a^{2}+b^{2}$, where p is an odd prime number and a is odd. Show that $\left(\frac{a}{p}\right)=+1$. (Use the Jacobi symbol.)

9 (8 points). Let a and b be positive integers. Show that

$$
\phi(a b) \phi(\operatorname{gcd}(a, b))=\phi(a) \phi(b) \operatorname{gcd}(a, b), \quad \phi=\text { Euler } \phi \text {-function. }
$$

(Example: If $a=12$ and $b=8$, the equation reads $32 \cdot 2=4 \cdot 4 \cdot 4$.)
10 (5 points). Find all solutions in integers y and z to the equation $6^{2}+y^{2}=z^{2}$.

