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SOCIETE MATHEMATIQUE DE FRANCE
2e serie, Memoire n0 2 , 1980, p. 75-94

DIVISION FIELDS OF ABELIAN VARIETIES
WITH COMPLEX MULTIPLICATION

by

K . A. RIBET

1. Let A be an abelian variety over a number field k. Suppose that A
has complex multiplication over k in the sense that (End^A) ® ̂  contains a commuta-

tive semisimple algebra E over $ of rank 2.dim A. For N > 1 , let d ( N ) be the degree
over k of the field k(A^) obtained by adjoining to k the kernel A of multiplica-
tion by N on A. Let a(N) be the number of (distinct) prime factors of N. The
main purpose of this paper is to prove the following result :
THEOREM ( 1 . 1 ) : There exist positive constants C , , Co and an integer v > 0 (depen-
ding on A, k, and E) such that we have

.,Ct(N) d ( N ) a ( N)
1 ~̂ 2

for all N > 1 .

We prove ( 1 . 1 ) by writing the SL -adic representations of A in the
form given them by Serre-Tate [15] (using the theory of Shimura-Taniyama [17]

and Weil [ 1 8 ] ) and then exploiting some elementary facts about the "mod (,n*' points
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of tori over ^. The possibility of doing this was suggested by a letter fron Serre
to Masser [13] concerning the special case where A is a product of several elliptic

*
curves ? to prove ( 1 . 1 ) we have followed Serre's arguments. It should be noted that
a variant of ( 1 . 1 ) was proved by T. Kubota [4] , who considered integers N of the
form a , (, being a fixed prime. Also, in this volume, Hasser [ 6 ] has treated
prime numbers M, for abelian varieties of dimension 2.

In our proof of ( 1 . 1 ) , the integer v arises as the dimension of
a certain torus which is familiar in other contexts. Namely, it is the Hodge group
of A (see [ 1 ] and §§ 3,4 of [i4] ) , and so its dimension bounds the transcendence
degree of the field generated by the periods of differentials on A [ 1 ] . For us, the
torus is given as the image of a certain explicit map between tori ; therefore, via
the dictionary between tori and their character groups, computing v cooes down to
computing the rank of a certain matrix. In § 3 of this paper, we write down explici-
tly the matrix that intervenes, and this enables us to give the lower bound 2+ Log.d
for 'V in the case where A is absolutely simple, d denoting the dimension of A. There
is also a trivial upper bound for v i namely the sum of 1 and the dimension of A.
When v attains this upper bound, we say (following Kubota) that A is "non-degene-
rate." For A absolutely simple, it follows from our lower bound that A is always
non-degenerate for d « 1 , 2 , 3 . We give several examples (due, variously , to Shimura,
Serre, and Lenstra) of absolutely simple A which do not have this property. The
smallest example has d « 4 and v « 4 ; this is given by the CM type constructed by
Mumford and described in [ 9 ] .

For the reader who was present at the Conference, it might be
pointed out that this article bears no relation to the author's talk, for which
one can consult [10 ] . The material concerning the calculation of v is based on a
manuscript written in 1977-78 after correspondence with Masser and discussions with
Serre and Lenstra. It later formed the basis for a talk by the author at the Rennes
conference on algebraic geometry in June, 1978.^ • — — — — — — — — — — — — — — — — — —
For the convenience of the reader, the text of this letter (and a sequel) has been
included as an appendix to this paper.
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2 • Let T be a torus over $ - , and let

X(T) « Hon.- (T,C )
^9. m

be the character group of T. Using an idea of Ono [7,§ 2] , we define subgroups

T(l+J?Zy ) (n > 0) of T(^) by the rule

Td+Jl11^) = (t € T(^) I X(t) « 1 mod &" for all X € X(T)} .

We have X (t) € $^ , and the condition X(t) • 1 mod A" means that ordp ( X (t)-l)

is at least n. Thus T (5Zp ) is the maximal compact subgroup of T (^p) , and the various

T( l+ A Zj^ ) define a filtration of T(Zp) by open subgroups. We further define

TtZ/H^ » T(Z^ ) /T(1+ ^Z ) ( n > 0).

Example ( 2 . 1 ) : Let E = E. x . . . x E be a product of finite extensions of $ p ,
and let T be the torus obtained by viewing E * as an algebraic group over Q n • Then
we have

T(Z^) « R* ,

where R is the integer ring of E, namely the product of the integer rings of the E . .
Further, for n > 1 we have

T(l + ^2 ^ ) » {r € R I r € 1 + 5"R}

and

T( 32/^2 ) = (R/ &"R)

It is easy to check that the cardinality of TfZ/^Z ) is given by the formula
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m q. - 1
^ . n ^——

i»i ^

where \) is the dimension of the torus T ( i . e . the sum of the degrees of the E^
over © ) and q. is the order of the residue field of R , for i = 1 , . . . , m .
(Cf. [ 1 2 ] , Ch.IV,§ 2, Prop. 6 . ) A special case occurs when E is given by F ̂  $̂  ,
where F is a finite extension of $ , or a product of such extensions. Then we have

T = T . , where T is the torus over $ defined by F* .

Remark ( 2 . 2 ) : If T has "good reduction" ( i . e . T is split over a finite unramified

extension of $ ) , then there is a commutative smooth group scheme T̂  whose
general fibre is the torus T. One may show thafTCZ/J^Z ) coincides with the
group of Z /Ĵ Z -valued points of T , , for n > 1 . The special case n = 1 is
particularly easy to treat because it then suffices to identify T(Z / 9 . Z ) with the
group of rational points of the reduction T,y of T ( i . e . of T̂  )mod A . For

SL *.
this see Prop. 2 . 3 . 1 of [7] , where T^ is defined directly by declaring its

—&
character group to be X(T) , viewed as a Gald- /r.)-module (which we may do since

it is an unramified Gal($ /$)-module by hypothesis).

We now consider a map \ : T -» T' between $p -tori. For n > 0, it is

clear that X induces maps

T ( l + £"2. )_^T'd+^ZZ^)

T(Z/ f^TL ) ———^ T' (Z/ ̂Z )

We denote the second map by X .n

Theorem (2.3) : If \ is surjective. then the order of the cokernel of X is

bounded independently of n. 1^ \ is an isogeny, then both the kernel and the

cokernel of X have bounded order.———————^— n ——————————^——

78



DIVISION FIELDS OF ABELIAN VARIETIES

Proof : When X is surjective, the map

a ; T(ZS ) -» T' (Z )

induced by X has an open image, as one may see by viewing the two groups as
H -adic Lie groups, since the surjectivity of X just means that the map on Lie
algebras induced by a is surjective.(See Bourbaki, Groupes et Algebres de Lie,

Ch. Ill, Prop. 28 of § 3, n° 8 and Th. 2 of § 7, n ° l . ) Since T ' ( Z S ) is compact,

the cokernel of a is finite. Since the cokernel of \ is a quotient of this

cokernel for each n, we get the first statement of the theorem.
Now assume that X is an isogeny. Then the kernel of a is finite,

and the assertion to be proved reducesivia the snake lemma, to the assertion that

the cokernel of the restriction

a : T ( 1 + ̂ 7L . ) -» T' ( 1 + JẐ Z . )n & x

of a to T(l + ^"ZJ has order which is bounded independently of n. For this, we con-
sider the "transpose" isogeny X" and define a" for n > 0 as the map for X' analo-
gous to a . Then a • a^ is just multiplication by the degree of X on T' ( 1 + S^Z ) .
It is clear for n sufficiently large that T * ( 1 + Ĵ Zp ) is isomorphic to the group
Ẑ  where v == dim T = dim T' is independent of n. Hence the cokernel of a • ĉ  ,9, n n
and therefore that of a , has bounded order.

We now consider once again a surjection X : T -* T' over Cp » and

write X* for the corresponding inclusion

X ( T ' ) Ĉ y X(T)

of character groups. Let X" be the subgroup of X(T) given by

X" « <X € X(T) |nX € *̂ ( X ( T ' ) ) for some n ̂  1} .
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Then (X- : X(T')) is finite, and X(T)/(X") is torsion free. If we let T" be the

Cp -torus corresponding to X", then the inclusion

X(T') S X1*

corresponds to an isogeny

v : T" -» T'

and the inclusion X(T-) c--yX(T) corresponds to a map

U : T -» T"

whose kernel is connected (i.e. is a torus). We have

\ * v • v.

Theorem (2.4) : Suppose that X(T) is an unramified Gal (gp / $ „ )-module, so that

the tori T, T', T" have good reduction. Suppose also that i is prime to the degree

N of the isogeny ^ . Then, with the notation as in (2.3), the order of the cokemel

of ^ is bounded by N. If, furthermore, X is an isoqenv (so that X « v ) , then

the kernel of X again has order bounded by N.————————— n —-————————————————*.

Proof : It is known that the map T ( S Z p ) ——»T"(Zp) induced by U is surjective

because of the good reduction hypothesis ([8] ,§ 4.2). It will therefore be enough

to prove the statements when X is an isogeny, which we now suppose to be the case.

Under our hypotheses, the map

0^ : T(l + ^Z^) -» T ' ( l + ^ - S Z ^ )

induced by X is known to be an isomorphism [7, Prop. 2.2.2] . It follows formally

from this that the maps

a^ : T(l + Jt" z^ ) -* T ' ( l + ^"Z^)
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axe isomorphisms for all n> 1. [Given t' € T ' ( l+ A^Z y ) , suppose that

t» « X(t) for t € T(l + &Z ). It is clear that we have

)((t) » 1 mod A

X(t) N m 1 mod A"

for all x € X(T) ; from this it follows that we have \(t) • 1 mod &" for all -

X , giving t € T( l + 5,"2Z ) . ]
We find that the cokernel and kernel of X are independent of n,n

for n > 1. Taking n « 1 , we see that X. is the map on T - points induced by the

reduction X/— : T , -» T' of \ . Thus the kernel of X , is the group
^ /F;- ^ *

of r - rational points of the kernel of X , so its order is in particular a
divisor of N. On the other hand, it is well known that the kernel and cokernel of
X , have equal orders, because of Lang's Theorem ( [ 5 ] ; cf. [ l l ] Ch.VI, n ° 6 , Prop.5)
and the triviality of the Herbrand quotient of a finite module. (Equivalently, the
isogenous tori T , and T ' , have the same number of rational points-) This

f̂c '-&
completes the proof.

We next consider the situation where we are given tori over ®. If
T , is a torus, we define T(2Z /€^7L ) to be T,^ (22/^2 ) for each prime i and

all n > 1 . Given a map X : T -» T' between two tori, we now write X. for the
induced maps T(2/ £"2 ) -» T* (Z/ £"22 ) .

Theorem (2.5) : Given a torus T over $, there are constants C, C' > 0 such that

we have

C < Jl'"^ CardWZS/^S)) < c*

for all n > 1 and all primes 1 , where \> is the dimension of T.

Theorem (2.6) : Let > : T -* T' be a surjective map between O-tori. Then the

order of coker X is bounded independently of & and n. If moreover X is an
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isogeny, the order of the ker X. is similarly bounded.k. — ' •—•———~——--——~~~~ x»^n

Proofs : The second theorem is an obvious consequence of ( 2 . 3 ) , ( 2 . 4 ) . To prove

( 2 . 5 ) , we will use ( 2 . 6 ) and a general philosophy due to Ono. First, we observe
that ( 2 . 5 ) is visibly correct in the special case where T » T is the torus attached
to a finite extension E of ® , cf. ( 2 . 1 ) . Next we notice, by Brauer's theorem on
induced characters, that there are ffnite extensions K , . . . ,K ? L , . . . , L of ® and1 n 1 m
an integer r > 0 such that the two tori

( T^ x (T x...x T )
R, R.,

T X...x T
1 m

are isogenous. (See [7] , Th. 1 .5 .1 . ) Since (2.5) holds for the second of the two,

it holds for the first by (2.6). It thus holds for T^ (using again the case T « T )
6

and thus for T.

Corollary (2.7) : Le^ X : T -» T' be a homomorphism of ®-tori. There exist

constants C, C' > 0 such that we have

Card(Im(A. ))
C <——————ilIL^C'

^

for all A and n, where \) is the dimension of the image of \ .

Proof : Without loss of generality, we may suppose \ surjective. Then it is

clear that our result follows from (2.5) and (2.6).
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3. We now wish to deduce ( 1 . 1 ) from the above corollary. Before beginning

to do so, we make some preliminary simplifications. It is clear that to prove ( 1 . 1 )

for a given A/k, we may replace k by a finite extension of k and A by an abelian

variety which is isogenous to it. We thus introduce the hypothesis that A has

everywhere good reduction, as we have a right to do by a well known theorem of

Serre-Tate ( [ 1 5 ] , Th. 7 ) . Secondly, after replacing A by a variety isogenous to it,

we may suppose that End A contains the "integer ring" of E. Namely, if we write E
as a product E, x . . . x E of fields, we suppose that End^A contains the product ̂  of

the integer rings 0. of the E . . In particular, this assumption enables us to write
A as a product

A » A x . . . x A.

where A . has complex multiplication by ^. . (It is clear that [ E . : $]= 2 dim A .
for each i because the first member is known to be a divisor of the second

[ 1 7 , Prop.2, p . 3 9 ] and because of the assumption [E : ®] = 2 dim A . )
It is well known (see ch. II, § . 5 . 1 of [ 1 7 ] ) that each A . is

isogenous over k to a power of an (absolutely^ simple abelian variety B . of CM

type. In proving ( 1 . 1 ) , we may replace each A . by the corresponding B . (making a
finite extension of k at the same time). This enables us to assume that each of
the A . occuring above is in fact absolutely simple. This means that each of the fields

E. is a CM field and that the "CM type" attached to each A . is simple in a sense
which will be presently recalled . This assumption, and the previous ones will be

in force for the remainder of this paper. To summarize, we assume :
i) that A has everywhere good reduction over k ^

ii) that A is given as a product A x . . . x A . of absolutely simple abelian
varieties, with each A . having complex multiplication by the integer ring of a

CM field E . .

Proving ( 1 . 1 ) under these assumptions will give a proof in general.
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In order to discuss the individual factors with a minimum of
notation, we now temporarily suppose

iii) that t « I ,
i.e. that A is already absolutely simple. This assumption will be in force for the
remainder of this paragraph.

To discuss the "CM-type" attached to A, and the "dual- (or reflex)
CM type derived from A, we embed k and E into the complex field <C . Let L be the
Galois closure of E in fi, and let

G « Gal(L/®) , H « GaKL/E).

We introduce the convention that G acts on E on the right. Thus for example, we may
view the set Hom(E,C) of embeddings of E into C as the coset space H \G. We write
c for the complex conjugation of <C, or any of its restrictions.

As in [ 1 7 ] , the data (A/k,E) define a CM-type S & Hom(E,C). This
is a subset of H \ G such that H\ G is the disjoint union of S and Sc . Put

S m {g € G | Hg € S} .

The absolute simplicity of A translates into the equality ( [ 1 7 ] , Prop. 26 )

H « {g € G |g§ « S} .

We say that the CM type ( E , S ) is simple. We symetrically introduce

H' « {g € G | Sg « S}

» { g € G S g R » R} .

where R is the set S~ of inverses of elements of S. Let K be the fixed field of
H ' , and let R c Hom(K,fl:) be the image of R in H\ G.
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Then (K,R) is again a simple CM type, that dual to (E,S), Because (E,S) is simple >

it is its own double dual (i.e. the dual of (K,R)), and it is known that k contains

K. (See [17] , Props. 28 and 30.)

We may view G as acting (on the right) on the set of CM types for

E, and H' is then the stabilizer of the CM type (E,S). Since the number of CM

types for E is 2 where d « [E : ^]/2 is the dimension of A, we clearly have

(3.1) [K : $] » (G : H ' ) < 2d.

If we put d' « [K : $]/2, then by ( 3 . 1 ) and the symmetry we have

(3.2) 1+ Log d < d' < 26"1 .

It is known that for each d > 1 , we may find a CM type ( E , S ) with this d such
that d' « 2 ~ . (For a more precise statement, see ( [ 1 6 ] , 1 . 1 0 ) . )

Associated to the pair of CM types ( E , S ) , ( K , R ) is a homomorphism

which is most easily described by giving the corresponding homomorphism 0* of
character groups of these tori. For F a finite extension of ^, we write X for the
character group of the torus T ; this is the right Gal ($/$)-module consisting of
integral linear combinations Z n [a] with o € H o m ( F , C ) . (We take $ to be the
algebraic closure of $ in C . ) This applies especially when F « K or E, in which case
for g € G we write [ g ] for the embedding of F into fl: induced by g.

We define ((>*: X -» X_ by the formulah. K.

[9] ^ Z [rg] .
r € R
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This makes sense because replacing g by hg (h € H) has the effect of permuting

the various terns [rg] . The map 4>* is visibly Gal($/%)-equivariant.

(Cf.[l7] , Prop. 29.)

Following T. Kubota [4 ] , we refer to the dimension of the image

of <t> : T -» T as a rank, the rank of the CM type (E,S) . This integer may beK E ———

expressed as the rank of the Z-submodule < ( / * ( X ^ ) of X^ ; using the natural

bases for X and X , we then see the rank as the rank of the matrix
1C E

^•^oeHSG
T € H ' \G

defined by

• 1 if T 0~1 € R
i(T,0 )

. 0 if not .

(For T , 0 € G, and for h € H, h' € H ' , we have TO" € R if and only if
(h 1 T ) ( h o ) ~ 1 € R . ) It is obvious that if we exchange the roles of ( E , S ) and
( K , R ) , we replace ( i ( T , 0 ) ) by its transpose. Hence we find

Proposition ( 3 . 3 ) : The rank of a CM type ( E , S ) is equal to the rank of its dual.

It is easy to see that the rank of (E » S ) satisfies the inequality

rank(E,S) < d+ 1 .

For example, we have Im<t> <= T, where T is the (d+ 1)-dimensional torus such that

T(A) « {x € T^(A) « (Eyy*- I xx° € A* }

for ^-algebras A. By the symmetry ( i . e . by ( 3 . 3 ) ) , we have

(3.4) rank(E,S) < min (d+ 1 , d ' + 1).
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These facts were all pointed out by Kubota [4 ] , who calls a CM type non-degene-

rate if its rank is equal to d +1 .

It is amusing to note that there is a lower bound for the rank' :

(3.5) max(2+Log d, 2 + Log d') < rank(E.S).

To prove ( 3 . 5 ) , it suffices by the symmetry to prove that rank ( E , S )

is at least 2 + Log d = Log (4d) . We note that the image of (^* contains the

vectors
Z[rg] g € H\G
r

E([r] + [rg]) g G h\G ,
r

which we easily check to have pairwise distinct images in X /2X . [ The only tricky————— - j^ K.
point is to check that no vector in the first group is congruent mod 2 to a vector
in the second. Write all vectors in the form I n [ g ] . For vectors in the

g€H'\G 9
first group, we have n + n = 1 for all g; for those in the second, we have9 gc
n + n = 2 for all g . ] It follows (as Lenstra pointed out) that the image of ^
generates an r -subsoace of X /2X of dimension at least Log 4d. This implies inZ ~ K K Z.

particular the assertion about the rank.

Corollary ( 3 . 6 ) : Suppose that we have d ' = 2 ~ . Then ( E , S ) is non-degenerate :
we have rank(E.S) = d + 1 .

Proof : We have under the hypothesis, by ( 3 . 5 ) and ( 3 . 4 ) ,

d + 1 = 2+ Log-d' < rank(E.S) < d+ 1 .

Examples ( 3 . 7 ) : If d = 1 , 2 , 3 , then the inequalities

2 + Log d < rank ( E , S ) < d+1

show that ( E , S ) is always non-degenerate. If d = 4, then we find
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4 < rank(E,S) < 5 ,

and both possibilities may occur. Indeed, if d1 • 8, then the rank is 5 by ( 3 . 6 ) ;

we may specify examples with d* « 8 as remarked after ( 3 . 2 ) . Similarly, if d' « 3

(note that 4 " 2 3 ' 1 ) , we have rank(E,S) « 4 by ( 3 . 6 ) , which we apply after switching
the roles of ( E , S ) and its dual. (Incidentally, the CM type constructed by Mumford
and described in Pohlmam [ 9 ] in connection with Hodge classes on abelian varieties

gives a specific example where d « 4 but d' = 3 . ) A case-by-case analysis once
performed by the author showed that rank(E.S) is 5 in all cases where d « 4 and

d' > 4. The tedious proof of this fact has been mislaid.
Before moving to the special case where E is an abelian extension

of $ ,we mention an alternate interpretation of 4> , or rather of the composite of

<^ and the norm map N . : T -» T . We let t , be the tangent space to A/k at the
origin, so that t , is a k-vector space of rank d on which E acts. It is altemate-

*
ly an E- vector space on which k acts. For a € k* we let l^(a) € E be the
determinant of the E-linear map "multiplication by a" on t«/i- The map ip : k* -» E*
is obviously induced by an algebraic map T -» T , which we again denote by ^ ,

(cf. [ 1 5 ] , p . 5 1 1 ) .

Proposition ( 3 . 8 ) : The map ^ is the composition of the norm map N , : T -» T̂

and the map ^ : T̂  -» T^.

This is well known, and is used implicitly in [ 1 5 ] , § 7. For a proof,

see [l6L § 1 . 3 .

Corollary ( 3 . 9 ) : The rank of ( E , S ) is equal to the dimension of the image of ^ .

Proof : The map N . is surjective .

In addition to assumptions ( i ) , ( i i ) , (iii) introduced above, we

suppose now and for the remainder of this § , that E is an abelian extension of $.
Then L « K « E, and G « GaKE/®). We may view 0* as an endomorphism of X » X̂  .
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We calculate the effect of ^* on the basis vectors v « ^ XWEg] of
x g € G

Xg 9 C , where y runs over the set of -̂valued characters of the abelian group

G. We find

4,*(v ) « ( Z )((s)) v
X s € S A

for each ^. This gives

Proposition (3.10) (cf^J , lemma 2) : The rank of ( E , S ) is the n"t"N*r of
characters ^ for which the sum

X<S) » t x ( s )
s € S

is non zero.

Note that when x is an even character ( i . e . ytc) = + 1 ) , we have
X (S ) ^ 0 if and only if y is non trivial. The rank is thus one plus the number
of odd characters x for which ^(S) is non zero.

We close this paragraph with some examples.

(3• l l) L®! p > 5 be a prime, and let E be the field $(y ) of p^ roots

of unity. We identify G with (Z/pZ )* in the usual way. For g € G, write <g> for

the integer between 1 and p- 1 which represents g mod p. Let a be an integer

satisfying 1 < a < p-2 . The set

S = {g C G ! <g> + <ag> < p)

is readily seen to be a CM type for E. It is simple if and only if a is of order

^ 3 in (Z/pZ)*, which we suppose to be the case. (See, e.g., [3], Th. 2.) For

)( odd, one finds

X(S) = L(0, x ) ( 1 + ^(a) - x '^ l+a)) ,
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by a computation generalizing that of [ 4 ] , lemma 3. Thus ( E , S ) is "degenerate"

if and only if there is an odd character \ satisfying the unlikely equality

yd + a ) « y ( l ) + y ( a ) .

Thus S is non-degenerate, for example, if a « 1 . Greenberg [ 2 ] found that S is
degenerate for p « 67 and a = 10, 1 9 , 47, 56, 60. For sufficiently large primes

p x 7 (mod 1 2 ) , Lenstra and Stark noticed that there is always an a for which S

is degenerate (loc. c i t . ) .

( 3 . 1 2 ) Let E be the field of 32nd roots of unity. As usual, we identify G
with (22/32 22)* . Let S be the subset { 1 , 7, 13, 15, 21, 23, 27, 29} of G. Then

S is a "simple" CM type, and ) ( ( S ) vanishes when \ is the character

/ -1 if x • 3 (mod 4)
x ^ {I +1 if x * 1 (mod 4) •

Thus S is degenerate . (This example was found by Lenstra.) Similarly, if we take
S' » { 1 , 7, 9 , 11, 13, 15, 27, 29} , then S* is again a simple CM type such that
) ( ( S ' ) =0 for both odd characters y' of order 2.

( 3 . 1 3 ) Take E this time to be the field of 19th roots of unity, so that
G is (22/19 22)* . Let S » { 1 , 3 , 4 , 5 , 6 , 7 , 8 , 1 0 , 1 7 } . Then S is a simple CM type such

that ) ( ( S ) « 0 for both (odd) characters \ of order 6 . (This example was provided
by Serre in response to a question of Masser.)

( 3 . 1 4 ) Let p , q , r be distinct odd primes, and let G be the cyclic group
2Z /2pqr 22 . Let E be a Galois extension of fl) with Gal(E/$) ex G. Let S be the

subset of G consisting of those elements having order 1 , pq r, 2p, 2q, 2r, 2pq,2pr, or

2qr. It is evident that ( E , S ) is a CM type, and it is simple because S contains the
identity element of G but no non-trivial subgroup of G. A calculation shows that,
for Y odd, we have y(S) « 0 if and only if y has order 2pqr. Hence we have
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rank(E.S) = 1 + pqr - (p-1) (q-1) (r - 1).

This example, recently constructed by Lenstra, shows that the rank may be quite

small relative to EE : $],even in the case where the CM field E is abelian.

4. We now return to the situation outlined at the beginning of § 3,where the
abelian variety A/k satisfies conditions ( i ) and ( i i ) , but we no longer assume

that E is a single field. We wish to prove ( 1 . 1 ) for A.
For N > 1 , let A» be the Gal (k/k) -module of N-division points on A,

and let G be the image of the representation

P^ : Gal(k/k) -̂  Aut A^

giving the action of Gal(k/k) on A^ . Thus G is the Galois group over k of the
division field k ( A ) , and the order of G is the degree d(N) of this field. Since
A has everywhere good reduction over k, k(A^)/k is ramified only at primes of k
dividing N. Thus, if N and M are relatively prime, k(A ) n k(A^) is contained
in the Hilbert class field of k. After replacing k by its Hilbert class field, we

thus find that the function

N ,———>d(N)

is "multiplicative" in the usual arithmetic sense. Thus to prove ( 1 . 1 ) it suffices

to obtain for each prime A and each integer n > 1 an inequality

C<-^-<0.

in which C and C' are constants depending on A, k, E, and where v > 0 is an integer.
We recall now the decomposition A « A x . . . x A, For each i, let

^ : T __»T be the map \l> of ( 3 . 8 ) made with the abelian variety A of § 3i k E^
taken to be A . Let
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^ '' ^-^•^^•••^ \

be the product of the \0 . We will prove that (4.1) holds with v equal to the

dimension of the image of <p . Thus if A is simple (i.e. t • 1) , then v is the

rank of the CM type attached to A, in the sense of § 3.

For a prime SL , let p be the A-adic representation of Gal(k/k)

attached to A, i.e. the project!ve limit of the p (n > 1 ) . A priori, p takes&" r
values in the group of automorphisms of the Tate module lim A of A, but it is

^~ A"
well known that the values of p lie in the subgroup (^•^ ZS,) of

A00

Autdim A ) , cf. [15, § 4, Cor. 2] . Hence p is abelian and may be viewed
& A"

as a map

\——(e»=/.

where I, is the group of ideles of k. For (4.1),no harm is done in replacing I.

by the product n U of the groups of units at the non-archimedean completions of
v v

k, since this product has finite index in the abelianized Galois group of k. (In

fact, this replacement is the replacement of k by its Hilbert class field which

we discussed above.) Now p kills the group U if v is not of residue charac-
SL09

teristic a . Hence, we will view p as a map
A"

n U ————^ (Q 6. 7L , )*
vl&

i.e., as a map

w - w'
cf. (2 .1) .

Let \: T -» T be the "inverse" of ^ » i.e., the map x »-» ^(x ).
k E

Then p is just th<» ^ap on 22 -points induced by A , in view of Theorem 1 1 of [l5]
9°°

and its corollaries. Now p for n > 1 is the composition of the map
A"
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p ^ with the reduction map ( 0^22 )* -* W ^O)* , i.e.^T (Z.) -» T (Z / ("22 ).

We have an evident commutative diagram

V2^ —————.Y2^

T^(Z/A2) ————————^ T^(ZS /&2Z)

in which the two vertical maps are reduction maps, the top horizontal map is P „
S,

and the lower horizontal map is the map denoted A. toward the end of § 1 . Hence^.n
G is just the image of X. (for n > 1) , and d( A " ) is the order of Im(X „ ) .pU X»»n x , , n
Thus ( 1 . 1 ) is a special case of ( 2 . 7 ) . Finally, again by ( 2 . 7 ) , the integer \) of
( 1 . 1 ) is the dimension of the image of X , or in other words the dimension of the

image of l|/ . This establishes ( 4 . 1 ) and the claim concerning the value of \) .
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