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DIVIDING RATIONAL POINTS ON ABELIAN
VARIETIES OF CM-TYPE

Kenneth A. Ribet*

This note has to do with the general problem of Galois representa-
tions arising from abelian varieties of CM-type. More particularly, we
wish to see what happens when one takes the €™ roots (£ a varying
prime) of a fixed set of rational points on a simple abelian variety A of
CM-type. Provided that the rational points are independent over the
endomorphism ring of A, the Galois groups that one obtains are as
large as possible for all but finitely many ¢. (See the theorem below for
a precise statement.)

This result has recently been applied by Coates and Lang in a study
involving diophantine approximation [4]. Similar results were previ-
ously obtained by Basmakov [1, 2], who studied elliptic curves (both
with and without complex multiplication). A special case was also
discussed in [3].

1. Statement of the result, and beginning of the proof

Let A be an abelian variety over a number field K. We assume that
all endomorphisms of A are defined over K and that the algebra

F=(End A)RQQ

is a field of degree 2-dim A. Thus A is simple and of CM-type.
If ¢ is a prime, let

pe:Gal (K/K)— Aut A,
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be the character giving the action of Gal (K/K) on the group of
¢-division points of A. Let G, C Aut A, be the image of p., and let
k. = K(A.) be the corresponding Galois extension of K.

Now let x;,..., x. be elements of the group A(K) of K-rational
points of A. Let K, be the extension of K obtained by adjoining to K
all €™ roots of all the points x. (These roots are taken in a fixed
algebraic closure K of K.) Then K, is a Galois extension of K which
contains k.. Let G, H,, and C, be the Galois groups in the following
diagram:

In view of the action of H, on the € roots of the x;, we may view C,
as a subgroup of the abelian group

Be =Ae X XA( (n til’l’les).
In fact, for any x € A(K), we define a continuous homomorphism
o Hy— A,

as follows: take any €™ root r of x, and set ¢, () =or—rif c €EH,. It
is immediate that ¢, is independent of the choice of r and that ¢, is a
homomorphism which induces an isomorphism of the Galois group
Gal (k.(¢'x)/k.) with a subgroup of A.. Set ¢: = ¢, (i =1,...,n), and
put

@ =@1 XX P

Then ¢ is a continuous homomorphism H,— B, which induces an
injection C, =—> B,. It is sometimes useful to identify C. with its
image in B.,.

Before stating the theorem, we make one more remark on terminol-
ogy. If M is a module over aring R and if m,, ..., m, € M, we say that
m, ..., m, are linearly independent (over R) if no non-trivial linear
combination = a;m; vanishes (a; € R).
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THEOREM: Assume that x,, ..., x, € A(K) are linearly independent
over End A. Then C, = B, for all but finitely many primes ¢.

We shall show, first of all, that B, = C, whenever ¢ satisfies a certain
pair of conditions. Then, in the remaining two sections, we will show
that each condition is satisfied provided that ¢ is sufficiently large.

Let O be the integer ring of F. One knows that End A = Endx A is a
subring of finite index in O. We shall always assume that our primes €
are unramified in F and prime to the index (O :End A). This condition,
satisfied by all but finitely many ¢, implies that

(End A)/¢(End A)=0/€0

is a product of fields and that A, is free of rank 1 over
(End A)/¢(End A) [6, pp. 501-502]. Then we have

G, C(O/€0)* = Autyeo A,

On the other hand, it is easy to see that C, is a G-stable subgroup of
B.. Indeed, this follows from the general formula

e (ror™) =7 - 9. (0)
valid for x € A(K), 1€ G, o € H..

LEMMA: Let R be a product of fields, and let V be a free rank-1
module over R. Suppose that C is an R-submodule of B=V X---XV
(n times) which is strictly smaller than B. Then there are elements
ti,..., t. of R, not all 0, such that

E t,‘U,' = 0
for all (v,,..., v.)EC.
ProorF: Clear.

CoroLLARY: We have C, = B, whenever the following two conditions
are verified :
(i) The subring F.[G.] of O]€O generated by the elements of G is in
fact all of O/€0.
(i) The homomorphisms ¢, . . ., ¢, : H, —> A, are linearly independent
over O/€0.
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ProorF: Given condition (i), we apply the lemma with R = O/¢0,
C = Cg, B = Be.

2. Galois action on points of finite order (verification of (i))

Let p be any rational prime which splits completely in the multiplica-
tion field F and such that A has good reduction at some prime of K
lying over p. Let v be such a prime. Since the Q.-adic Tate module V,
of A is free of rank 1 over FQQ;, and since all endomorphisms of A
are defined over K, V, is the direct sum of Gal (K /K)-modules which
are 1-dimensional over Q.. By the Serre-Tate lifting theory, this implies
that the endomorphism algebra (End A,)RQ of the reduction of A at
v is precisely equal to (End A)QRQ = F [5, Theorem 2, p. IV-41; Cor.,
p. IV-42]. Since F is commutative, Tate’s theorem says that F = Q (),
where 7, € 0 is the Frobenius endomorphism of A, [9, Th. 2(a), p. 140].
This implies that the ring Z([#,] has finite index in O.

ProposITION: If € is sufficiently large, then F,[G.]= O/€O.

Proor: From the above discussion we see that F.[m,]= O[£O
whenever ¢ is prime to the index of Z[w,]in O. Butif ¢# p then 7, (or
rather its image in O/¢0) belongs to G,: it is the image in G, of any
Frobenius element for v in Gal (K/K). We have then

0/€0 = F,[w,1C F.[G,1C O[€O

if ¢ is prime to (O: Z[=,]) and different from p.

ReMARK: Shimura has given an alternate proof of this proposition
based on the theory of complex multiplication [8, Th. 1, p. 110], [7,
Prop. 1.9]. As a compromise, one may obtain primes v for which

F = (End A,)®Q by using [8, Th. 2, p. 114] and then employ Tate’s
Theorem as above.

3. Application of the Mordell-Weil theorem (verification of (ii))

We consider the sequence

AK)—Z5 A(K)S HYG, Ar)
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obtained by taking cohomology in the short exact sequence
0> A, —> A(K)—> A(K)—0.

(““¢” is the map “multiplication by £.”)
LEMMA:

1. The map h: A(K)—->Hom (H,, A,) defined by x+—>¢, is (End A)-
linear.

2. Further, h is the composition of 8 with the restriction
homomorphism

Tes: Hl(G, Ae) - Hl(Hg, A() = Hom (He, A().

3. The map res is injective.

Proor: The first two statements are proved by a direct computation,
which we omit. The third follows from the restriction-inflation se-
quence together with the vanishing of

HI(G/H(, Ae) = HI(G{’ At’)'

This cohomology group vanishes because A, is an ¢-group, whereas
G, C(0O/£0)* has prime-to-£ order.

COROLLARY: The map h induces an (O/[€O)-linear injection

A(K)/¢A(K)“ Hom (H,, A,).

Hence ¢, ..., ¢, are linearly independent if and only if the images
K10 0vy %y Of X1,y..., X, in A(K)/€A(K) are linearly independent over
O/€0.

Proor: Clear.

ProrosITION: If € is sufficiently large, then o, ..., ¢, are linearly
independent.

Proor: Because of the corollary, it suffices to prove that the map

Tler 5 A(K)[€A(K)
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is injective, where I' is the subgroup of A(K) generated over O by
X1, ..., Xn. Let

I'={y € A(K)|my € I forsomem € Z}.

By the Mordell-Weil Theorem, I'' is finitely generated, and hence the
index (I"':I') is finite. One sees that j is injective whenever ¢ is prime
to (I'":I).!

As noted above, the theorem follows from the corollary of §1
together with the above proposition and the proposition of §2.

' Cassels remarks that one may avoid the use of the Mordell-Weil theorem here by using
properties of heights and a trick from diophantine approximation.
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