DIVIDING RATIONAL POINTS ON ABELIAN VARIETIES OF CM-TYPE

Kenneth A. Ribet*

This note has to do with the general problem of Galois representations arising from abelian varieties of CM-type. More particularly, we wish to see what happens when one takes the ℓ^{th} roots (ℓ a varying prime) of a fixed set of rational points on a simple abelian variety A of CM-type. Provided that the rational points are independent over the endomorphism ring of A, the Galois groups that one obtains are as large as possible for all but finitely many ℓ . (See the theorem below for a precise statement.)

This result has recently been applied by Coates and Lang in a study involving diophantine approximation [4]. Similar results were previously obtained by Bašmakov [1, 2], who studied elliptic curves (both with and without complex multiplication). A special case was also discussed in [3].

1. Statement of the result, and beginning of the proof

Let A be an abelian variety over a number field K. We assume that all endomorphisms of A are defined over K and that the algebra

$$F = (\operatorname{End} A) \otimes Q$$

is a *field* of degree $2 \cdot \dim A$. Thus A is simple and of CM-type. If ℓ is a prime, let

$$\rho_{\ell}: \operatorname{Gal}(\bar{K}/K) \to \operatorname{Aut} A_{\ell}$$

^{*} Sloan Fellow. The author wishes to thank the I.H.E.S. for its hospitality.

be the character giving the action of $\operatorname{Gal}(\overline{K}/K)$ on the group of ℓ -division points of A. Let $G_{\ell} \subseteq \operatorname{Aut} A_{\ell}$ be the image of ρ_{ℓ} , and let $k_{\ell} = K(A_{\ell})$ be the corresponding Galois extension of K.

Now let x_1, \ldots, x_n be elements of the group A(K) of K-rational points of A. Let K_{ℓ} be the extension of K obtained by adjoining to K all ℓ^{th} roots of all the points x_i . (These roots are taken in a fixed algebraic closure \bar{K} of K.) Then K_{ℓ} is a Galois extension of K which contains k_{ℓ} . Let G, H_{ℓ} , and C_{ℓ} be the Galois groups in the following diagram:

$$G\left(egin{array}{c} ar{K} \ ar{K} \$$

In view of the action of H_{ℓ} on the ℓ^{th} roots of the x_i , we may view C_{ℓ} as a subgroup of the abelian group

$$B_{\ell} = A_{\ell} \times \cdots \times A_{\ell}$$
 (*n* times).

In fact, for any $x \in A(K)$, we define a continuous homomorphism

$$\varphi_x: H_\ell \to A_\ell$$

as follows: take any ℓ^{th} root r of x, and set $\varphi_x(\sigma) = \sigma r - r$ if $\sigma \in H_{\ell}$. It is immediate that φ_x is independent of the choice of r and that φ_x is a homomorphism which induces an isomorphism of the Galois group $\operatorname{Gal}(k_{\ell}(\ell^{-1}x)/k_{\ell})$ with a subgroup of A_{ℓ} . Set $\varphi_i = \varphi_{x_i}$ (i = 1, ..., n), and put

$$\varphi = \varphi_1 \times \cdots \times \varphi_n$$
.

Then φ is a continuous homomorphism $H_{\ell} \to B_{\ell}$ which induces an injection $C_{\ell} \hookrightarrow B_{\ell}$. It is sometimes useful to identify C_{ℓ} with its image in B_{ℓ} .

Before stating the theorem, we make one more remark on terminology. If M is a module over a ring R and if $m_1, \ldots, m_n \in M$, we say that m_1, \ldots, m_n are linearly independent (over R) if no non-trivial linear combination $\sum a_i m_i$ vanishes $(a_i \in R)$.

THEOREM: Assume that $x_1, \ldots, x_n \in A(K)$ are linearly independent over End A. Then $C_{\ell} = B_{\ell}$ for all but finitely many primes ℓ .

We shall show, first of all, that $B_{\ell} = C_{\ell}$ whenever ℓ satisfies a certain pair of conditions. Then, in the remaining two sections, we will show that each condition is satisfied provided that ℓ is sufficiently large.

Let O be the integer ring of F. One knows that End $A = \operatorname{End}_K A$ is a subring of finite index in O. We shall always assume that our primes ℓ are unramified in F and prime to the index $(O : \operatorname{End} A)$. This condition, satisfied by all but finitely many ℓ , implies that

$$(\operatorname{End} A)/\ell(\operatorname{End} A) = O/\ell O$$

is a product of fields and that A_{ℓ} is free of rank 1 over $(\operatorname{End} A)/\ell(\operatorname{End} A)$ [6, pp. 501-502]. Then we have

$$G_{\ell} \subset (O/\ell O)^* = \operatorname{Aut}_{O/\ell O} A_{\ell}$$
.

On the other hand, it is easy to see that C_{ℓ} is a G_{ℓ} -stable subgroup of B_{ℓ} . Indeed, this follows from the general formula

$$\varphi_{x}(\tau \sigma \tau^{-1}) = \tau \cdot \varphi_{x}(\sigma)$$

valid for $x \in A(K)$, $\tau \in G$, $\sigma \in H_{\ell}$.

LEMMA: Let R be a product of fields, and let V be a free rank-1 module over R. Suppose that C is an R-submodule of $B = V \times \cdots \times V$ (n times) which is strictly smaller than B. Then there are elements t_1, \ldots, t_n of R, not all 0, such that

$$\sum t_i v_i = 0$$

for all $(v_1, \ldots, v_n) \in C$.

PROOF: Clear.

COROLLARY: We have $C_{\ell} = B_{\ell}$ whenever the following two conditions are verified:

- (i) The subring $\mathbf{F}_{\ell}[G_{\ell}]$ of $O/\ell O$ generated by the elements of G_{ℓ} is in fact all of $O/\ell O$.
- (ii) The homomorphisms $\varphi_1, \ldots, \varphi_n : H_{\ell} \to A_{\ell}$ are linearly independent over $O/\ell O$.

PROOF: Given condition (i), we apply the lemma with $R = O/\ell O$, $C = C_{\ell}$, $B = B_{\ell}$.

2. Galois action on points of finite order (verification of (i))

Let p be any rational prime which splits completely in the multiplication field F and such that A has good reduction at some prime of K lying over p. Let v be such a prime. Since the Q_{ℓ} -adic Tate module V_{ℓ} of A is free of rank 1 over $F \otimes Q_{\ell}$, and since all endomorphisms of A are defined over K, V_{ℓ} is the direct sum of Gal (\overline{K}/K) -modules which are 1-dimensional over Q_{ℓ} . By the Serre-Tate lifting theory, this implies that the endomorphism algebra $(\operatorname{End} \tilde{A}_v) \otimes Q$ of the reduction of A at v is precisely equal to $(\operatorname{End} A) \otimes Q = F$ [5, Theorem 2, p. IV-41; Cor., p. IV-42]. Since F is commutative, Tate's theorem says that $F = Q(\pi_v)$, where $\pi_v \in 0$ is the Frobenius endomorphism of \tilde{A}_v [9, Th. 2(a), p. 140]. This implies that the ring $Z[\pi_v]$ has finite index in O.

PROPOSITION: If ℓ is sufficiently large, then $\mathbf{F}_{\ell}[G_{\ell}] = O/\ell O$.

PROOF: From the above discussion we see that $F_{\ell}[\pi_{\nu}] = O/\ell O$ whenever ℓ is prime to the index of $Z[\pi_{\nu}]$ in O. But if $\ell \neq p$ then π_{ν} (or rather its image in $O/\ell O$) belongs to G_{ℓ} : it is the image in G_{ℓ} of any Frobenius element for ν in $Gal(\bar{K}/K)$. We have then

$$O/\ell O = \mathbf{F}_{\ell}[\pi_v] \subseteq \mathbf{F}_{\ell}[G_{\ell}] \subseteq O/\ell O$$

if ℓ is prime to $(O: \mathbb{Z}[\pi_n])$ and different from p.

REMARK: Shimura has given an alternate proof of this proposition based on the theory of complex multiplication [8, Th. 1, p. 110], [7, Prop. 1.9]. As a compromise, one may obtain primes v for which $F = (\operatorname{End} \tilde{A}_v) \otimes Q$ by using [8, Th. 2, p. 114] and then employ Tate's Theorem as above.

3. Application of the Mordell-Weil theorem (verification of (ii))

We consider the sequence

$$A(K) \xrightarrow{``\ell``} A(K) \xrightarrow{\delta} H^{1}(G, A_{\ell})$$

obtained by taking cohomology in the short exact sequence

$$0 \to A_{\ell} \to A(\bar{K}) \xrightarrow{``\ell"} A(\bar{K}) \to 0.$$

(" ℓ " is the map "multiplication by ℓ .")

LEMMA:

- 1. The map $h: A(K) \rightarrow \text{Hom}(H_{\ell}, A_{\ell})$ defined by $x \mapsto \varphi_x$ is (End A)-linear.
- 2. Further, h is the composition of δ with the restriction homomorphism

res:
$$H^1(G, A_\ell) \rightarrow H^1(H_\ell, A_\ell) = \text{Hom } (H_\ell, A_\ell)$$
.

3. The map res is injective.

PROOF: The first two statements are proved by a direct computation, which we omit. The third follows from the restriction-inflation sequence together with the vanishing of

$$H^1(G/H_\ell, A_\ell) = H^1(G_\ell, A_\ell).$$

This cohomology group vanishes because A_{ℓ} is an ℓ -group, whereas $G_{\ell} \subseteq (O/\ell O)^*$ has prime-to- ℓ order.

COROLLARY: The map h induces an $(O/\ell O)$ -linear injection

$$A(K)/\ell A(K) \hookrightarrow \operatorname{Hom}(H_{\ell}, A_{\ell}).$$

Hence $\varphi_1, \ldots, \varphi_n$ are linearly independent if and only if the images $\tilde{x}_1, \ldots, \tilde{x}_n$ of x_1, \ldots, x_n in $A(K)/\ell A(K)$ are linearly independent over $O/\ell O$.

PROOF: Clear.

PROPOSITION: If ℓ is sufficiently large, then $\varphi_1, \ldots, \varphi_n$ are linearly independent.

PROOF: Because of the corollary, it suffices to prove that the map

$$\Gamma/\ell\Gamma \stackrel{i}{\to} A(K)/\ell A(K)$$

is injective, where Γ is the subgroup of A(K) generated over O by x_1, \ldots, x_n . Let

$$\Gamma' = \{ y \in A(K) | my \in \Gamma \text{ for some } m \in \mathbb{Z} \}.$$

By the Mordell-Weil Theorem, Γ' is finitely generated, and hence the index $(\Gamma':\Gamma)$ is finite. One sees that j is injective whenever ℓ is prime to $(\Gamma':\Gamma)$.

As noted above, the theorem follows from the corollary of \$1 together with the above proposition and the proposition of \$2.

¹ Cassels remarks that one may avoid the use of the Mordell-Weil theorem here by using properties of heights and a trick from diophantine approximation.

REFERENCES

- [1] M. BAŠMAKOV: Un théorème de finitude sur la cohomologie des courbes elliptiques. C.R. Acad. Sci. Paris Sér. A-B 270, A 999-A 1000 (1970).
- [2] M. BAŠMAKOV: The cohomology of abelian varieties over a number field. Russian Math. Surveys 27 (6) (1972) 25-70.
- [3] J. COATES: An application of the division theory of elliptic functions to diophantine approximation. *Inventiones math.* 11 (1970) 167-182.
- [4] J. COATES and S. LANG: Diophantine approximation on abelian varieties with complex multiplication. (To appear).
- [5] J-P. SERRE: Abelian ℓ-adic representations and elliptic curves. New York: Benjamin
- [6] J-P. SERRE and J. TATE: Good reduction of abelian varieties. Ann of Math. 88 (1968) 492–517.
- [7] G. SHIMURA: On canonical models of arithmetic quotients of bounded symmetric domains. Ann. of Math. 91 (1970) 144-222.
- [8] G. SHIMURA and Y. TANIYAMA: Complex multiplication of abelian varieties and its applications to number theory. *Publ. Math. Soc. Japan* 6 (1961).
- [9] J. TATE: Endomorphisms of abelian varieties over finite fields. *Inventiones Math.* 2 (1966) 134–144.

(Oblatum 9-X-1975)

Fine Hall Princeton, N.J. 08540 USA