Yet More Quizzes May 11, 2013 Math 55—Ken Ribet

Kim Laine: "All of my quizzes are on my website."

1. Use induction to show that the sum of the squares of the first n positive integers is $\frac{n(n+1)(2n+1)}{6}$.

2. In how many ways can the letters in the word "MISSISSIPPI" be rearranged if we dont count movement of indistinguishable characters? (You may leave factorials in your final answer.)

3. Find the number of solutions in non-negative integers to the equation x + y + z + w = 12.

4. Find a recurrence relation for the number strings of letters from among $\{a, b, c, d\}$ of length n that have 2 consecutive a's.

5. Solve: $a_0 = 0, a_1 = 1, a_n = a_{n-1} + 6a_{n-2}$.

6. What sequence has $\frac{1}{1+2x}$ as a generating function?

7. Let $A = \{1, 2, 3\}$. Let $R = \{(1, 2), (3, 1), (2, 2), (2, 3)\}$. Give both the matrix representation of R and the digraph for R.

8. Let $A = \{1, 2, 3\}$. Recall that $\Delta = \{(1, 1), (2, 2), (3, 3)\}$ is the diagonal relation. Give an example of binary relations R and S on A such that $R \circ S = \Delta$, yet $R, S \neq \Delta$.

9. Let E_1 and E_2 be two equivalence relations on a set A. Must $E_1 \cup E_2$ be an equivalence relation on A too? (Either prove it must be an equivalence relation or give an example showing it doesn't have to be one.)

10. See Rosen, problem 8.4.23; the GSI changed some of the bounds and added another variable x_4 .

11. See Rosen problem 8.2.4(g).

12. What are the three axioms of an equivalence relation?

13. Give an example of: a) a uniformly distributed random variable and b) a binomially distributed random variable.

14. Suppose X and Y are random variables such that E[XY] = E[X]E[Y]. Show that V[X + Y] = V[X] + V[Y].

15. Find a recurrence relation and initial conditions for the number of ternary strings containing neither 012 or 210.

16. Let R be the relation $\{(1,2), (1,3), (4,4)\}$ on the set $\{1,2,3,4\}$. Let P be the property that every vertex has total degree (in-degree minus outdegree) zero. Show that the closure of R with respect to P does not exist.

17. Are the following graphs bipartite? [The question included two pictures. It was pretty easy to see that one of the graphs was bipartite and that the other one wasn't.]

18. Let G be a simple graph. Define a binary relation R on the vertices of G by saying that $(x, y) \in R$ iff there is a finite sequence of $n \ge 1$ vertices (v_1, \ldots, v_n) such that $v_1 = x$, $v_n = y$, and for each i with $1 \le i < n$, v_i and v_{i+1} are adjacent. Prove that R is an equivalence relation.

matrix. a) Does H have an Euler path? b) Does H have an Euler circuit?

20. Suppose that G is a connected planar graph that has exactly two regions R_1 and R_2 . What are the possible values of $(\deg(R_1), \deg(R_2))$? I.e., what are the possible pairs of degrees of the regions?