Quiz questions given through February 15, 2013
a) Make a truth table for $p \rightarrow q$ and $q \rightarrow p$. b) State whether these two formulas are logically equivalent or not and circle the relevant portions of the truth table for justification.
Express $\exists x P(x)$ in terms of \forall.
Prove that $\sqrt{2}$ is irrational.
a) Make a truth table for $p \rightarrow q$ and $\neg q \rightarrow \neg p$. b) State whether these two formulas are logically equivalent or not and circle the relevant portions of the truth table for justification.
Express $\forall x(P(x) \wedge Q(x))$ in terms of \exists and \vee.
Prove that the product of two odd numbers is always odd.
a) Make a truth table for $p \rightarrow q$ and $\neg p \rightarrow \neg q$. b) State whether these two formulas are logically equivalent or not and circle the relevant portions of the truth table for justification.
Express $\neg \exists x \neg P(x)$ in terms of \forall.
Let x and y be integers. Prove that if $x y$ and $x+y$ are even, then x and y are even too.
Use truth tables to prove that $\neg(p \vee q)$ is equivalent to $\neg p \wedge \neg q$.
Given sets A and B, prove that the complement of the intersection of A and B is equal to the union of the complement of A and the complement of B.

Determine whether

$$
\begin{array}{ll}
\text { a) } \forall x[\exists y(x \leq y)] & \text { b) } \exists y[\forall x(x \leq y)]
\end{array}
$$

are true or false when the domain is \mathbb{Z}. Explain.
Is the compound proposition $(p \rightarrow q) \wedge(q \rightarrow r)$ logically equivalent to $p \rightarrow r$? Hint: It is not. Explain.
Prove that $\sqrt{2}+\sqrt{3}$ is irrational assuming you know that $\sqrt{2}$ is irrational. Determine whether

$$
\begin{array}{ll}
\text { a) } \forall x[\exists y(x y=1)] & \text { b) } \exists y[\forall x(x y=1)]
\end{array}
$$

are true or false when the domain is $\mathbb{Q}-\{0\}$. Explain.
Is the compound proposition $(p \rightarrow q) \wedge(q \rightarrow r)$ logically equivalent to $p \rightarrow r$? Hint: It is not. Explain.

Prove that $\sqrt{2}-\sqrt{5}$ is irrational assuming you know that $\sqrt{2}$ is irrational.

