A sample Math 54 final exam

Ken Ribet
UC Berkeley

December 9, 2005

Problem \# 1

Show that the vectors $(1,1,3),(1,3,1),(0,0,1)$, and $(0,-2,1)$ in \mathbf{R}^{3} are dependent. You may quote any relevant theorem.

Problem \# 2

Find the inverse of the matrix

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

Problem \# 3

Find a basis for the nullspace of the matrix

$$
\left[\begin{array}{ccccc}
1 & -2 & 0 & 4 & 0 \\
0 & 0 & 1 & -9 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Problem \# 4

Sketch the phase plane flow for the system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right] \mathbf{x}
$$

Be sure to mark carefully the directions of the flow lines.

You do not need to write down the exact solution.

Problem \# 5

Write down the solution $u(x, t)$ of the partial differential equation $u_{t}=16 u_{x x}$ for $0<x<\pi$ and $t>0, u=0$ for $x=0, \pi$ and $t \geq 0, u=$ $\sin (3 x)+3 \sin (5 x)$ for $0 \leq x \leq \pi$ and $t=0$.

If you remember the form of the solution, you do not need to go through the entire process of deriving it.

Problem \# 6

Apply the Gram-Schmidt procedure to the vectors

$$
\mathbf{v}_{1}=(1,1,1), \mathbf{v}_{2}=(0,1,1), \mathbf{v}_{3}=(0,0,1)
$$

to generate an orthonormal set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.

Problem \# 7

The function $u(x, t)=X(x) T(t)$ solves the PDE

$$
u_{t}=u_{x x}+6 u_{x}
$$

What ODE must X and T satisfy?

Problem \# 8

Let $y_{1}(x)$ and $y_{2}(x)$ be two solutions of the ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

Show that the Wronskian

$$
W=\operatorname{det}\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]
$$

solves the ODE

$$
W^{\prime}+p(x) W=0
$$

Problem \# 9

Find the general solution of the system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
-8 & -1 \\
16 & 0
\end{array}\right] \mathbf{x} .
$$

Problem \# 10

Find the determinant of the matrix

$$
\left[\begin{array}{lllll}
2 & 4 & 1 & 1 & 1 \\
4 & 2 & 0 & 7 & 7 \\
2 & 4 & 2 & 1 & 1 \\
2 & 4 & 1 & 2 & 1 \\
2 & 4 & 1 & 1 & 3
\end{array}\right] .
$$

(Hint: Think first about how to simplify the structure of the matrix.)

Problem \# 11

For $-\pi<x<\pi$ we can write

$$
|x|=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos (m x)+b_{m} \sin (m x)
$$

Compute the Fourier coefficients a_{0}, a_{1}, \ldots and b_{1}, b_{2}, \ldots

Problem \# 12

We are given data points $\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$ and wish to find a line

$$
y=m x+b
$$

that minimizes the total least squares error.
Show how to set up this problem in the form

$$
A \mathbf{x}=\mathbf{y}-\epsilon
$$

as discussed in class. Write down the normal equations for the unknowns m and b.

Problem \# 13

Let A be an $m \times n$ matrix. Prove that $N S(A)$ is perpendicular to $R S(A)$.

Problem \# 14

Let \mathbf{u} and \mathbf{v} be elements of an inner product space V.

State and prove the Cauchy-Schwarz inequality for \mathbf{u}, \mathbf{v}.
(Hint: $\|\mathbf{u}-t \mathbf{v}\|^{2} \geq 0$.)

Problem \# 15

The $n \times n$ matrix function $X(t)$ solves the ODE

$$
X^{\prime}(t)=A X(t)-X(t) A, X(0)=B
$$

Assume that λ is an eigenvalue of B with eigenvector \mathbf{x}_{0}, and that $\mathbf{x}(t)$ solves

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \mathbf{x}(0)=\mathbf{x}_{0} .
$$

Prove that for each time t, λ is an eigenvalue of $X(t)$, with eigenvector $\mathbf{x}(t)$.
(Hint: Define

$$
\mathbf{y}(t)=X(t) \mathbf{x}(t)-\lambda \mathbf{x}(t)
$$

and show $\mathbf{y}^{\prime}(t)=A \mathbf{y}(t)$.)

