Math 250B
Homework due May 16, 2003

Recall that \mathbf{Z}_{p} denotes the p-adic completion of \mathbf{Z} and that $\hat{\mathbf{Z}}$ denotes the profinite completion of \mathbf{Z}.

1. Show that -1 is a square in \mathbf{Z}_{5}.
2. Let E be the set consisting of all non-negative integers, together with an extra element ∞. A supernatural number is a formal product $\prod_{p} p^{e_{p}}$, where the product runs over all primes p and where the exponents e_{p} are elements of E. If m is a supernatural number, let $m \hat{\mathbf{Z}}$ be the intersection of the groups $n \hat{\mathbf{Z}}$, taken over all positive integers n that divide m. Show that the set of closed subgroups of $\hat{\mathbf{Z}}$ corresponds bijectively with the set of supernatural numbers under the map $m \mapsto m \hat{\mathbf{Z}}$.
3. Let K and L be extensions of k inside a large field Ω (as in Chapter VIII, $\S 3$ of the textbook). Is it true that K and L are linearly disjoint over k if and only if the natural map $K \otimes_{k} L \rightarrow \Omega$ is injective?
4. At the beginning of the proof of Theorem 4.13 on page 367 , our author says "From the hypotheses, we deduce that K is free from the algebraic closure L^{a} of L over k." How do we deduce this?
5. Do problems 2-7 at the end of Chapter VII (pp. 374-375).
