
Math 250A Professor K. A. Ribet
First Midterm Exam September 27, 2001

This is an 80-minute exam. Please hand in your blue books and papers promptly
at 3:30PM. Although this is a “closed book” exam, you may consult a page of
notes that you prepared in advance.

1 (3 points). Find the number of elements of order 7 in a simple group of
order 168.

The 7-Sylow can’t be normal because the group is simple. The number of 7-
Sylows divides 24 and must be 1 mod 7, so it’s 8. There are 6 elements of
order 7 in each Sylow, and two Sylows have no common elements except for the
identity. Hence the number of elements of order 7 is 6 · 8 = 48.

2 (3 points). Use the solvability of groups of order 12 to prove that groups of
order 588 = 22 · 3 · 72 are solvable.

The 7-Sylow here is normal because the number of 7-Sylows is 1 mod 7 and
is a divisor of 12. The 7-Sylow is abelian, and therefore solvable in particular.
The quotient of the group by the normal 7-Sylow is also solvable because it has
order 12. Since the group is an extension of one solvable group by another, it’s
solvable.

3a (3 points). If X and Y are objects of a category C, explain succinctly (but
precisely) what is meant by the product of X and Y .

See page 58 of Lang. What’s important to me is that the product is not just
an object of C; it’s an object that comes equipped with projection maps to X
and Y . These are the maps called f and g on page 58.

3b (5 points). Let C be the following category:
• The objects of C are the positive integers 1, 2, 3,. . . .
• Mor(n, m) is the set of m × n matrices (m rows and n columns) with real

coefficients.
• The composition law Mor(n, m) × Mor(l, n) → Mor(l,m) is ordinary matrix

multiplication.
Do products exist in this category? If so, what is the product of n and m in C?

The category that I described in this question is secretly equivalent to the cate-
gory of real vector spaces of the form Rn with n ≥ 1. The product of Rn and Rm



would be Rn+m. This suggests that n + m is the product of n and m in C. To
verify that n + m works as the product, we have to give maps n+m → n and
n+m → m in the category and verify that mapping to the purported product is
the “same” as mapping to both n and m. A map f from n + m to n is a matrix
with n + m columns and n rows; we take f = ( In 0 ), where In is the n × n
identity matrix and the “0” is a matrix of 0s with n rows and m columns. Sim-
ilarly, g : n+m → m should be ( 0 Im ), where 0 now stands for a matrix with
n columns and m rows. Now we have to check that this works: Suppose that we
are given a map ` → n + m, where ` is an arbitrary positive integer. This is a

matrix h with ` columns and n+m rows; it’s natural to write h =
(

F
G

)
, where

F and G both have ` columns, but where F has n rows and G has m of them.

The product f ◦ h is the matrix product ( In 0 )
(

F
G

)
, which comes out to be

the matrix F of size n × `. Similarly, g ◦ h = G. The map
(

F
G

)
7→ (F,G) is a

bijection from the space of maps ` → n+m to the set of pairs of maps (F,G), in
which the first entry is a map ` → n and the second is a map ` → m.

4a (4 points). Let g be an element of the finite group G. Let σ : G → G be the

permutation x 7→ gx. Show that the sign of this permutation is
(
(−1)`+1

)n/`
,

where ` is the order of g and n the order of G.

To calculate the sign of a permutation, you write the permutation is a product
of disjoint cycles and then use the rule that a cycle of length ` has sign (−1)`+1.
The cycles here are the orbits under the action of 〈g〉 on G; 〈g〉 is the group
generated by g. Notice that 〈g〉 consists of the powers of g; its order is the order
` of g. In fact, the orbits all have length ` because the orbit of x ∈ G under the
action of 〈g〉 is the set of elements of G of the form gix. The number of orbits
is then n/`, where n is the order of G. In summary, the sign of the permutation

is
(
(−1)`+1

)n/`
. This sign is +1 unless both n/` and ` + 1 are odd. These

conditions mean that ` must be (1) even and (2) a multiple of the largest power
of 2 in n. If n is even, then condition (2) implies condition (1).

4b (3 points). Suppose that the 2-Sylow subgroups of G are cyclic and that G
has even order. Prove that G has a subgroup of index 2.

Let g be a generator of a 2-Sylow of G. Then the sign that we calculated in
part (a) is −1. The existence of an element g with sign −1 means that the sign



map G → {±1} is not identically 1. This sign map is the composite of two
maps: the homomorphism G → Perm(G) that amount to the action of G on
itself by left translation, and the sign homomorphism Perm(G) → {±1} from
a permutation group to {±1}. (It might be helpful to remember that Perm(G)
becomes Sn if we order the n elements of G.) The desired subgroup of index 2
in G is the kernel of the non-trivial sign homomorphism G → Perm(G) that is
under discussion. Note that the existence of an index-2 subgroup of G shows
that G cannot be a simple group if it has order > 2 and satisfies the 2-Sylow
condition of this problem.

5 (4 points). Calculate the order of the conjugacy class of (1 2)(3 4) in the
symmetric group Sn (n ≥ 4). Find the order of the centralizer of (1 2)(3 4)
in Sn.

By problem 37a in last week’s homework, the conjugate of (1 2)(3 4) by γ is the
product (γ(1) γ(2))(γ(3) γ(4)). Since the γ(i) constitute an arbitrary quadruple
of distinct numbers, the conjugacy class consists of all products (a b)(c d) with a,
b, c and d distinct. The number of such products is n(n−1)(n−2)(n−3)/8. You
have to divide by 8 because you can flip the entries in each transposition and
flip the two transpositions without changing the value of (a b)(c d). The order of
the centralizer is then 8n!/n(n − 1)(n − 2)(n − 3) = 8(n − 4)!, since the order
of the group divided by the order of the centralizer is the number of elements in
the conjugacy class.


