A counting problem:

Let Ω be the set of 5 -card hands, drawn from a standard 52 -card deck, in which the ranks of the cards are all distinct. Let E be the set of 5 -card hands for which all cards come from a single suit. Let F be the set of 5 -card hands in which the ranks are consecutive. Thus the hands in E are the flushes, straight flushes and royal flushes. Similarly, the hands in F are the straights, straight flushes and royal flushes. The hands in $E \cap F$ are the straight flushes and royal flushes. The two sets E and F are subsets of Ω.
a. Calculate the number of elements in each of the following sets: $E, F, E \cap F, \Omega$.
b. Suppose that Ω is regarded as a probability space in the natural way: each hand in Ω is assigned the same probability. Calculate the probabilities $\operatorname{Pr}(E), \operatorname{Pr}(F), \operatorname{Pr}(E \cap F)$.
c. Are the two events E and F independent? If not, can you explain why $\operatorname{Pr}(E \mid F)$ should be different from $\operatorname{Pr}(E)$?

Problems from the book:

4.9, 4.20a c $4.21,4.22,4.23,4.24,4.25,4.27,4.29$

