Afternoon Edition

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in complete sentences. Your explanations are your only representative when your work is being graded.

The problems have equal weight.

1. Suppose that G is a finite group and that $g \in G$ has order n (where n is a positive integer). Let i be an integer. Find a formula for the order of g^{i} and prove that your formula is correct.
2. Suppose that H is a finite group in which each non-identity element has order 2. Prove that H is abelian.
3. Let x be an element of the dihedral group $D_{2 n}(n \geq 3)$. Describe explicitly the set of conjugates of x (i.e., the set of elements of the form $g x g^{-1}$). Treat separately the cases where x is a power of r and where x is not a power of r.
4. Let σ be the 20-cycle ($\left.\begin{array}{lllllllll}1 & 2 & 3 & 4 & \cdots & 17 & 18 & 19 & 20\end{array}\right)$. What are the different cycle types that occur as we consider the various powers of σ ? For which integers i is σ^{i} a 20 -cycle?
5. Let p be a prime number. Find the number of invertible matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in \mathbf{Z} / p \mathbf{Z}$. For $t \in(\mathbf{Z} / p \mathbf{Z})^{*}$, show that the number of such matrices with determinant t is equal to the number of such matrices with determinant 1 . What is the latter number?
