Mathematics 113 First Midterm Exam

Morning Edition

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in *complete sentences*. Your explanations are your only representative when your work is being graded.

The problems have equal weight.

1. If *H* is a subgroup of **Z** (the group of integers under addition), prove that there is an integer $n \ge 0$ such that *H* is the set of integer multiples of *n*.

2. Let *n* and *m* be integers ≥ 3 . Suppose that there is a surjective ("onto") homomorphism $D_{2n} \to D_{2m}$. Show that *n* is a multiple of *m*.

3. If *n* is a positive integer, recall that $\mathbf{Z}/n\mathbf{Z}$ is the group of mod *n* integers under addition and that $(\mathbf{Z}/n\mathbf{Z})^*$ is the group of invertible mod *n* integers under multiplication. Recall further that *a* mod *n* is invertible if and only if *a* and *n* are relatively prime (i.e., have gcd = 1). The group $G = (\mathbf{Z}/n\mathbf{Z})^*$ operates on the set $A = \mathbf{Z}/n\mathbf{Z}$ by multiplication: for $g \in G$ and $a \in A, g \cdot a$ is the product of *g* and *a* mod *n*.

For $a \in \mathbb{Z}/n\mathbb{Z}$, establish a formula (in terms of a and n) for the order of the stabilizer G_a .

4. Find the 20th power of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 4 & 8 & 1 & 10 & 5 & 6 & 9 & 3 & 2 \end{pmatrix}$.

5. Let Ω be the set of positive integers. For each positive integer *n*, describe an element of order *n* in the symmetric group S_{Ω} .