Morning Edition

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in complete sentences. Your explanations are your only representative when your work is being graded.

The problems have equal weight.

1. If H is a subgroup of \mathbf{Z} (the group of integers under addition), prove that there is an integer $n \geq 0$ such that H is the set of integer multiples of n.
2. Let n and m be integers ≥ 3. Suppose that there is a surjective ("onto") homomorphism $D_{2 n} \rightarrow D_{2 m}$. Show that n is a multiple of m.
3. If n is a positive integer, recall that $\mathbf{Z} / n \mathbf{Z}$ is the group of $\bmod n$ integers under addition and that $(\mathbf{Z} / n \mathbf{Z})^{*}$ is the group of invertible mod n integers under multiplication. Recall further that $a \bmod n$ is invertible if and only if a and n are relatively prime (i.e., have gcd $=1$). The group $G=(\mathbf{Z} / n \mathbf{Z})^{*}$ operates on the set $A=\mathbf{Z} / n \mathbf{Z}$ by multiplication: for $g \in G$ and $a \in A, g \cdot a$ is the product of g and $a \bmod n$.

For $a \in \mathbf{Z} / n \mathbf{Z}$, establish a formula (in terms of a and n) for the order of the stabilizer G_{a}.
4. Find the 20th power of the permutation $\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 4 & 8 & 1 & 10 & 5 & 6 & 9 & 3 & 2\end{array}\right)$.
5. Let Ω be the set of positive integers. For each positive integer n, describe an element of order n in the symmetric group S_{Ω}.

