Mathematics 113 Yet Another Exam Professor K. A. Ribet December 20, 2013

Friday Night Edition 237 Hearst Gym

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in *complete sentences*. Your explanations are your only representative when your work is being graded.

Name: _____

SID: _____

Problem	Value	Your Score
1	6	
2	4	
3	8	
4	5	
5	6	
6	6	
7	5	
Total	40	

1. Let G be a finite group, and let N be a normal subgroup of G. Suppose that H is a subgroup of G. Prove that the index $(H : (H \cap N))$ divides the index (G : N). Deduce that if H is a subgroup of A_n , then $(H : (H \cap A_n)) \leq 2$.

2. Write (12)(123)(1234)(12345) as a product of disjoint cycles in S_5 .

- **3.** Suppose that G is a group of order $3825 = 3^2 \cdot 5^2 \cdot 17$.
 - **a.** Show that G has a unique subgroup N of order 17.
 - **b.** Show that the group N in part (a) is a subgroup of the *center* of G.

4. Let R be a commutative ring with identity. When n is an integer, write n_R for the element of R corresponding to n. For example, $3_R = 1 + 1 + 1$, where each "1" in the equation is the identity element of R. If n and m are relatively prime integers, show that the ideal (n_R, m_R) in R is all of R.

5. Suppose that G is a finite group of p-power order (where p is a prime number).

a. Let A be a finite G-set (i.e., a set with an action of G). Prove the congruence $|A| \equiv |A^G| \mod p$, where A^G is the set of elements of A that are fixed by all elements of G.

b. Suppose that $N \neq \{1\}$ is a normal subgroup of G. Show that $N \cap Z(G)$ is not the trivial group.

6. Find the gcd of 11 + 7i and 18 + i in $\mathbf{Z}[i]$.

7. Let R be a commutative ring with identity. Suppose that for each $a \in R$ there is an integer n > 1 such that $a^n = a$. Prove that every prime ideal of R is a maximal ideal.