Friday Night Edition
 237 Hearst Gym

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in complete sentences. Your explanations are your only representative when your work is being graded.

Name: \qquad SID: \qquad

Problem	Value	Your Score
1	6	
2	4	
3	8	
4	5	
5	6	
6	6	
7	5	
Total	40	

1. Let G be a finite group, and let N be a normal subgroup of G. Suppose that H is a subgroup of G. Prove that the index $(H:(H \cap N))$ divides the index $(G: N)$. Deduce that if H is a subgroup of A_{n}, then $\left(H:\left(H \cap A_{n}\right)\right) \leq 2$.
2. Write $(12)(123)(1234)(12345)$ as a product of disjoint cycles in S_{5}.
3. Suppose that G is a group of order $3825=3^{2} \cdot 5^{2} \cdot 17$.
a. Show that G has a unique subgroup N of order 17 .
b. Show that the group N in part (a) is a subgroup of the center of G.
4. Let R be a commutative ring with identity. When n is an integer, write n_{R} for the element of R corresponding to n. For example, $3_{R}=1+1+1$, where each " 1 " in the equation is the identity element of R. If n and m are relatively prime integers, show that the ideal $\left(n_{R}, m_{R}\right)$ in R is all of R.
5. Suppose that G is a finite group of p-power order (where p is a prime number).
a. Let A be a finite G-set (i.e., a set with an action of G). Prove the congruence $|A| \equiv\left|A^{G}\right| \bmod p$, where A^{G} is the set of elements of A that are fixed by all elements of G.
b. Suppose that $N \neq\{1\}$ is a normal subgroup of G. Show that $N \cap Z(G)$ is not the trivial group.
6. Find the gcd of $11+7 i$ and $18+i$ in $\mathbf{Z}[i]$.
7. Let R be a commutative ring with identity. Suppose that for each $a \in R$ there is an integer $n>1$ such that $a^{n}=a$. Prove that every prime ideal of R is a maximal ideal.
