Math 113H

Professor K. A. Ribet
Midterm Exam
April 5, 1991

1. Show that all groups of order 22 are either cyclic ${ }_{(6 \text { points) }}$ or dihedral.
2. Let $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 7 & 6 & 8 & 1 & 5 & 2\end{array}\right)$.
${ }^{(7 \text { points }) ~ a . ~ W r i t e ~} \sigma$ as a product of disjoint cycles.
b. Find $\operatorname{sgn} \sigma$.
c. Calculate $\tau \sigma \tau^{-1}$, where $\tau=(123)(456)$.
3. a. For which n does the symmetric group S_{n} have an element of order 15 ?
b. For which n does S_{n} have a subgroup of order 15 ?
4. Let N be a normal subgroup of the group G. ${ }^{(7 \text { points) }}$) Assume that $N \neq(e)$ and that G is finite with p-power order (where p is a prime). Show that $N \cap Z \neq(e)$, where Z is the center of G.
