Math 113H

Professor K. A. Ribet Midterm Exam April 5, 1991

1. Show that all groups of order 22 are either cyclic or dihedral. (6 points)

2. Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 7 & 6 & 8 & 1 & 5 & 2 \end{pmatrix}$$
.
(7 points)
a. Write σ as a product of disjoint cycles.
b. Find sgn σ .
c. Calculate $\tau \sigma \tau^{-1}$, where $\tau = (123)(456)$

a. For which n does the symmetric group S_n 3. have an element of order 15?

> b. For which n does S_n have a subgroup of order 15?

(7 points)

4. Let N be a normal subgroup of the group G. Assume that $N \neq (e)$ and that G is finite with p-power order (where p is a prime). Show that $N \cap Z \neq (e)$, where Z is the center of G.

(6 points)