Math 113H

Professor Ken Ribet First Midterm Exam February 18, 1991

- **1.** Let G be a cyclic group of order 6^{100} . How many subgroups does G have? (Don't just write down a number; give some explanation.)
- **2.** Let G be a group of order 11^2 which is not cyclic. How many elements of order 11 are there in G? How many subgroups does G have?
- **3.** Find an integer x such that $x \equiv 23 \mod 69$ and $x \equiv 34 \mod 397$. (Don't bother simplifying your answer if it is complicated.) The identity $4 \cdot 397 = 23 \cdot 69 + 1$ will probably be useful.
- 4. Here are two relations on the set of rational numbers. Which are equivalence relations? (Explain your answers.)
 a. Two rational numbers are related if their sum may be written p/q with p and q integers such that p is even and q is odd.
 b. Two rational numbers are related if their difference may be written p/q where p and q are integers such that q is not divisible by 4.
- **5.** Let g be an element of a finite group G. Define a map $\phi \colon \mathbf{Z} \to G$ by $\phi(n) = g^n$ for $n \in \mathbf{Z}$. Show that ϕ is a homomorphism of groups. Prove that the kernel of ϕ consists precisely of the multiples of the order of g.