Math 113H

	Fina 	al Exam	Professor K. A. Ribet May 24, 1991	12:30–3:30PM	
(3)	1.	Use quadratic reciprocity to determine whether or not 17 is a square mod 31.			
(2)	2.	Write $x^6 + 18x^5 - 4x^3 + 2x + 22$ as a product of irreducible polynomials over J_2 .			
(2)	3.	Write $x^6 + 18x^5 - 4x^3 + 2x + 22$ as a product of irreducible polynomials over Q .			
(2)	4.	Write 17 as a product of irreducible elements in the ring $\mathbf{Z}[i]$.			
(6)	5.	Find the minimal polynomial for $\sqrt{2} + \sqrt{3}$ over Q and show that it is irreducible over Q .			
(4)	6.	Let I be a left ideal of a ring R which contains $rs - sr$ for all $r, s \in R$. Show that I is a 2-sided ideal.			
(8)	7.		l subgroup of a group G . Suppose that the o Prove that N is contained in the center of G		
(7)	8.	Let G be a subgroup of the additive group of real numbers such that G has only finitely many elements in each closed interval $[a, b]$. Prove that G is cyclic.			
(8)	9.	Let $N = 561 = 3 \cdot 11 \cdot 17$. Prove the congruence $a^N \equiv a \pmod{N}$ for all integers a . (Assume known the corresponding result where N is replaced by a prime number.)			
(9)	10.	-	nt of a finite group G , and let $\sigma: G \to G$ d ress the sign of σ in terms of the order of g		
(15)	11.	Define a "norm" N a. Prove that an b. Show that the c. Show that no d. Show that the $\varphi \colon R \to J_2$.	the the subring of R consisting of numbers a $N: R \to \mathbb{Z}$ by $N(a + b\sqrt{5}) = a^2 - 5b^2$. The element of R is a unit if and only if its norm the group of units of R is infinite. The element of R has norm ± 2 . The formula $a + b\sqrt{5} \mapsto (a + b \mod 2)$ defines the kernel of φ is not a principal ideal of R .	m is ± 1 .	
(9)	12.	Let K be a finite f	field. Prove that the product of the non-zero	b elements in K is -1 .	