Math 113H

Professor K. A. Ribet
Final Exam
May 24, 1991
12:30-3:30PM

1. Use quadratic reciprocity to determine whether or not 17 is a square $\bmod 31$.
2. Write $x^{6}+18 x^{5}-4 x^{3}+2 x+22$ as a product of irreducible polynomials over J_{2}.
3. Write $x^{6}+18 x^{5}-4 x^{3}+2 x+22$ as a product of irreducible polynomials over \mathbf{Q}.
4. Write 17 as a product of irreducible elements in the $\operatorname{ring} \mathbf{Z}[i]$.
5. Find the minimal polynomial for $\sqrt{2}+\sqrt{3}$ over \mathbf{Q} and show that it is irreducible over \mathbf{Q}.
6. Let I be a left ideal of a ring R which contains $r s-s r$ for all $r, s \in R$. Show that I is a 2 -sided ideal.
7. Let N be a normal subgroup of a group G. Suppose that the order of N is 5 and that G has odd order. Prove that N is contained in the center of G.
8. Let G be a subgroup of the additive group of real numbers such that G has only finitely many elements in each closed interval $[a, b]$. Prove that G is cyclic.
9. Let $N=561=3 \cdot 11 \cdot 17$. Prove the congruence $a^{N} \equiv a(\bmod N)$ for all integers a. (Assume known the corresponding result where N is replaced by a prime number.)
10. Let g be an element of a finite group G, and let $\sigma: G \rightarrow G$ denote the permutation $x \mapsto g x$ of G. Express the sign of σ in terms of the order of g and the order of G.
11. Let $R=\mathbf{Z}[\sqrt{5}]$ be the subring of \mathbf{R} consisting of numbers $a+b \sqrt{5}$, with $a, b \in \mathbf{Z}$. Define a "norm" $N: R \rightarrow \mathbf{Z}$ by $N(a+b \sqrt{5})=a^{2}-5 b^{2}$.
a. Prove that an element of R is a unit if and only if its norm is ± 1.
b. Show that the group of units of R is infinite.
c. Show that no element of R has norm ± 2.
d. Show that the formula $a+b \sqrt{5} \mapsto(a+b \bmod 2)$ defines a ring homomorphism $\varphi: R \rightarrow J_{2}$.
e. Prove that the kernel of φ is not a principal ideal of R.
12. Let K be a finite field. Prove that the product of the non-zero elements in K is -1 .
