Math 110

PROFESSOR KENNETH A. RIBET

First Midterm Examination

February 20, 2014
9:40-11:00 AM, 105 Stanley Hall

Please write your NAME clearly: Ken Ribet.
These are skeletal solutions, written quickly after the exam ended.

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in complete sentences. Your explanations are your only representative when your work is being graded.

Unless otherwise noted, vector spaces are vector spaces over \mathbf{F}, where $\mathbf{F}=\mathbf{R}$ or $\mathbf{F}=\mathbf{C}$.
At the conclusion of the exam, hand your paper in to your GSI.

Problem	Your score	Possible points
1		5 points
2		6 points
3		6 points
4		6 points
5		7 points
Total:		30 points

1. Consider the basis $\left(1, x, x^{2}, x^{3}\right)$ of the \mathbf{R}-vector space $V=\mathcal{P}_{3}(\mathbf{R})$. Let $\left(\varphi_{1}, \ldots, \varphi_{4}\right)$ be the basis of V^{\prime} that is dual to $\left(1, x, x^{2}, x^{3}\right)$. Let $\varphi: V \rightarrow \mathbf{R}$ be the linear functional

$$
f(x) \mapsto f(6)+\int_{0}^{1} f(x) d x
$$

Find numbers a, b, c, d for which $\varphi=a \varphi_{1}+b \varphi_{2}+c \varphi_{3}+d \varphi_{4}$.
Suppose that we apply φ to one of the basis vectors; let's apply it to x. Then $\varphi(x)=$ $a \varphi_{1}(x)+b \varphi_{2}(x)+c \varphi_{3}(x)+d \varphi_{4}(x)=a \cdot 0+b \cdot 1+c \cdot 0+d \cdot 0$, with the last equality coming from the definition of a dual basis. Hence $b=\varphi(x)=6+\frac{1}{2}$. The other constants can be recovered by evaluating φ on the other basis vectors.
2. Label each of the following assertions as TRUE or FALSE. Along with your answer, provide an informal proof, counterexample or other explanation.
a. If $T: V \rightarrow W$ is a linear map and $v_{1}, v_{2}, \ldots, v_{r}$ are vectors of V such that $\left(T v_{1}, \ldots, T v_{r}\right)$ is linearly independent, then $\left(v_{1}, \ldots, v_{r}\right)$ is linearly independent.

This is true. The linear independence of $\left(v_{1}, \ldots, v_{r}\right)$ means that the equation $0=a_{1} v_{1}+$ $\cdots+a_{r} v_{r}$ implies that all the a_{i} are 0 . The equation implies that $0=a_{1} T v_{1}+\cdots+a_{r} T v_{r}$ by the definition of "linear map." The latter equation implies that the a_{i} are 0 because the $T v_{i}$ are linearly independent.
b. If $T: V \rightarrow W$ is a linear map and $v_{1}, v_{2}, \ldots, v_{r}$ are vectors of V such that $\left(T v_{1}, \ldots, T v_{r}\right)$ spans W, then $\left(v_{1}, \ldots, v_{r}\right)$ spans V.

This is blatently false. For example, W could be the 0 -vector space, so that T would take all elements of V to 0 . Any old random list of vectors in V will be such that their images span $W=\{0\}$, but the vectors in V don't have to span V.
3. Label each of the following assertions as TRUE or FALSE. Along with your answer, provide an informal proof, counterexample or other explanation.
a. If X is a 5 -dimensional subspace of a 8 -dimensional vector space V, there is a 2 dimensional subspace Y of V such that $X \cap Y=\{0\}$.

This is true. The simplest thing to do is to pick a basis $\left(v_{1}, \ldots, v_{5}\right)$ of X and extend it to a basis $\left(v_{1}, \cdots, v_{5}, v_{6}, v_{7}, v_{8}\right)$ of V. We can take Y to be the span of $\left(v_{6}, v_{7}\right)$. This is like choosing a complementary subspace to X (as we did concretely in a lot of homework problems), except that we use only two of the "extra" vectors instead of using all three.
b. If $\left(v_{1}, \ldots, v_{m}\right)$ and $\left(w_{1}, \ldots, w_{m}\right)$ are linearly independent lists of vectors in V, then $\left(v_{1}+w_{1}, \ldots, v_{m}+w_{m}\right)$ is linearly independent.

This is false, and kind of silly. (It's also an exercise in the book.) We could take the w_{i} to be the negatives of the v_{i}; the sums in the list would all be 0 .
4. Suppose that $p_{0}, p_{1}, \ldots, p_{m}$ are polynomials in $\mathcal{P}_{m}(\mathbf{F})$ such that $p_{j}(-1)=0$ for all j. Prove that $\left(p_{0}, p_{1}, \ldots, p_{m}\right)$ is not linearly independent in $\mathcal{P}_{m}(\mathbf{F})$.

If the given $m+1$ polynomials were linearly independent, they would form a basis of the $(m+1)$-dimensional vector space $\mathcal{P}_{m}(\mathbf{F})$. Then all polynomials of degree $\leq m$ would be linear combinations of the p_{j}. This would give that all such polynomials $p(x)$ of degree $\leq m$ satisfy $p(-1)=0$. But clearly there are polynomials that do not have this property, for example the constant polynomial 1 .
5. Let U be a subspace of V and let $T: U \rightarrow W$ be a non-zero linear map. Suppose that the function

$$
S(v):= \begin{cases}T(v) & \text { if } v \in U \\ 0 & \text { if } v \notin U\end{cases}
$$

is a linear map $V \rightarrow W$. Show that $U=V$.
Let's assume that U is smaller than V and that S is linear. We'll show that T is identically 0 . If we can accomplish this, then we'll have proved the desired assertion; this would be a proof by contradiction, if you wish, since T is assumed going in to be a non-zero linear map.

The assumption that U is smaller than V means that there is a vector in V that's not in U. Fix such a vector; call it v. For each $u \in U$, we have

$$
T(u)=S(u)=S((u-v)+v)=0+0=0
$$

as desired. The point here is that $u-v$ and v are vectors in V that are not in U.

