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A psychologist named Nalini Ambady gave

students three 10-second soundless videotapes of

a teacher lecturing. Then she asked the students to

rate the teacher. Their ratings matched the ratings

from students who had taken the teacher’s course for

an entire semester. Then she cut the videotape back

to two seconds and showed it to a new group. The

ratings still matched those of the students who’d sat

through the entire term.

—Review of Malcolm Gladwell’s “Blink: Hunch Power”
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I should have mentioned in my lecture on Tuesday

that Malcolm Gladwell is coming to Cody’s on

Telegraph on January 20, 2005. That’s tonight!

His presentation starts at 7:30PM.

These “slides” were prepared before class on

Tuesday. They will represent some part of my

lecture on Thursday, January 20. However, I intend

to lecture using chalk boards on January 20.
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Subspaces

An important concept in linear algebra is that of

a subspace of a vector space V . (The field F is part

of the picture, but goes unmentioned in the name of

the concept.) A subspace of V is a non-empty subset

W ⊆ V that is closed under addition, subtraction

and scalar multiplication. A subspace automatically

contains 0, because 0 = x− x if x is in W .

Two obvious subspaces of V are V itself and the

subset {0}. A proper subspace is one other than V .
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Examples

If v is an element of V , then the set { av | a ∈ F }
is a subspace of V . This is 0 if v = 0 and is the

“line generated by v” if v is non-zero.

For n ≥ 1, the set of vectors in F n whose nth

coordinates are 0 is a subspace of F n. It’s pretty

much indistinguishable from F n−1.
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In the same vein, you get lots of subspaces of

Mn×n(F ) or even Mm×n(F ) by looking at the set of

matrices where certain pre-determined entries are 0.

For example, the upper-triangular matrices form a

subspace of Mn×n(F ). The diagonal matrices form

a subspace of Mn×n(F ). In fact, this latter subspace

is also a subspace of the space of upper-triangular

matrices. One could go on and on here.
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A key point is that there’s no need to make entries

be 0. We can do something elaborate. For example,

we could let

W = { (x, y, z, w) ∈ F 4 |x + 2y + 3z + 4w = 0 }

or we could consider the set of 2× 2 matrices of the

form

(
a −b

b a

)
.

[What wouldn’t work would be to take the set of

(x, y, z, w) with 4x+3y +5z +9w = 2, for example:

the set wouldn’t be closed under addition.]
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Very generally, if A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ...

am1 am2 · · · amn


(a matrix with m rows and n columns), then the

set of x =

 x1
...

xn

 ∈ F n such that Ax = 0 is the

subspace of F n consisting of all

 x1
...

xn

 such that∑
j aijxj = 0 for each i, 1 ≤ i ≤ n.
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The map x 7→ Ax is a function F n → Fm. You

may know from Math 54 that this function is a linear

map (or linear transformation) F n → Fm and that

the subspace of F n that we just defined (i.e., the

set of x mapping to 0) is the kernel of this linear

transformation.

Mantra: kernels are subspaces.

8



Subspaces from subspaces

If W1 and W2 are two subspaces of V , then so are

W1∩W2 and W1 +w2 := {x+ y |x ∈ W1, y ∈ W2 }.
In fact, the intersection of an arbitrary collection of

subspaces of V is again a subspace of V .

This sounds innocuous, but a consequence is that,

for each subset S of V , there is a smallest subspace

of V that contains S: it’s the intersection of all of

the subspaces that do contain S.
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We want to understand this subspace explicitly.

Call it W . If s1, . . . , st are elements of S and

a1, . . . , at are numbers in F , then W contains the

linear combination a1s1 + · · · + atst. (If t = 0,

this linear combination is the empty sum, which

is deemed to be 0.) Thus W contains all linear

combinations of elements of S with coefficients in F .

Further, the set of all such linear combinations

forms a subspace of V that contains S, so it must

contain W (= the smallest subspace. . . ).
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Conclusion: W is the set of these linear

combinations! The smallest subspace of V that

contains S consists of the linear combinations of

elements of S with coefficients in F . These are

finite sums
∑

i aisi as on the previous slide.

The smallest subspace of V that contains S is

called the span of S; it’s written span(S) in our

book. We say that span(S) is the subspace of V

that is generated by S. If span(S) = V, then V is

generated by S and S is a generating set for V .
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Linear Independence

There are a couple of allied concepts, and it’s

important to pay attention. First, suppose that we

have a list of vectors in V : v1, v2, . . . , vn. We say

that v1, v2, . . . , vn are linearly dependent if there are

a1, . . . , an ∈ F , not all 0, such that

a1v1 + a2v2 + · · ·+ anvn = 0.
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Equivalently, v1, v2, . . . , vn are linearly dependent

if one of the vi is a linear combination of the others.

Indeed, if a1v1 + a2v2 + · · · + anvn = 0 and ai is

non-zero, then we can divide by ai and write

vi = −(1/ai)
∑

j

ajvj,

where the sum is taken over the j different from i.

Conversely, if vi =
∑

j 6=i cjvj, then 0 = −1 · vi +∑
j 6=i cjvj.
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We say that v1, . . . , vn are linearly independent if

they are not linearly dependent. This means:

0 =
∑

i

aivi =⇒ a1 = a2 = · · · = an = 0.

It is equivalent to say that the map

(a1, . . . , an) 7→
∑

i

aivi, F n → V

is injective (i.e., 1-1). The proof is easy but needs

to be supplied.
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Here is a silly special case: suppose that we have

a list v1, . . . , vn and that two vectors on the list are

equal. Say vi = vj with i 6= j. Then we have

0 = 1 · vi + (−1) · vj; this is a non-trivial linear

combination that is 0, so the vectors v1, . . . , vn are

linearly dependent.

Another observation: if one of the vectors is 0,

then v1, . . . , vn are linearly dependent. Indeed, if

vi = 0, then 0 = 1 · vi.
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One rarely worries about linear independence of

vectors when one of the vectors is 0.

Also, people usually take distinct vectors when

they consider the linear independence of a bunch

of vectors v1, . . . , vn. In our text, I am told that

the authors sometimes write down a list of vectors

and assume tacitly that the vectors are distinct

without mentioning explicitly that they are making

this hypothesis. So watch out.
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Suppose that v1, . . . , vn are elements of Fm; view

them as n columns of length m. Stack them in a

line to get an m × n matrix C = v1 · · · vn. Think

of the coefficients a1, . . . , an as a column vector

A. Then a1v1 + · · · + anvn = 0 if and only if

C · A = 0. This means that (a1, . . . , an) form a

solution to a homogeneous system of linear equations

in n unknowns a1, . . . , an. There are m equations

in the system. Whether or not the system has a

non-trivial (=non-zero) solution is the question of

whether or not the vi are linearly dependent.
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Here is the place where we need to pay attention.

If S is a subset of V , we say that S is linearly

dependent if there are distinct vectors v1, . . . , vn

in S and a1, . . . , an in F , not all 0, such that

a1v1 + . . . + anvn = 0. We say that S is linearly

independent if it is not linearly dependent.
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In this second definition, we are talking here about

a set of vectors. In the previous definition, we were

talking about a finite list of vectors. The set S here

can be infinite. Even if it’s finite, it doesn’t come

with an order of any kind. If you have a list of 15

vectors vi, and they are all equal, then the set of the

vi has only one element.
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For example, in R2, the two vectors (0, 1)
and (1, 0) are linearly independent. The vectors

(0, 1), (0, 1), (1, 0) are linearly dependent. The set

S = { (0, 1), (0, 1), (1, 0) } is linearly independent. It

has two elements!
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A good example of an infinite linearly independent

set occurs if you take V to be the space of

polynomials (in x) over F . The set

S = { 1, x, x2, x3, . . . }

is linearly independent. The proof is enough of a

tautology that it should be pondered: to say that a

linear combination of a finite set of the xi is 0 in V

is to say that some polynomial cnx
n + · · · + c0 is 0.

However, in V , a polynomial is deemed to be 0 if

and only if all of its coefficients are 0.
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This is a side topic, but it’s important. Suppose

that F = {0, 1} is the field with two elements. Let

f(x) = x2 − x. This is a non-zero polynomial. It

has degree 2. We love this polynomial. However,

it vanishes at all elements of F : we have f(0) =
f(1) = 0.

Conclusion: it is possible for a polynomial to give

the zero-function on F and yet not be the zero

polynomial. This can happen only when F is finite,

however.

22



In the definition of linear dependence of a set,

the number n (= the length of the list of the vi)

is not given in advance. If there is a non-trivial

linear combination of 106 different vectors in S that

vanishes, then S is linearly dependent. If S is finite,

we can always take n to be the number of elements

of S.
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