
Math 110 Professor K. A. Ribet

Final Exam May 18, 2005

This exam was a 180-minute exam. It began at 5:00PM. There were 7 problems,
for which the point counts were 8, 9, 8, 7, 8, 7, and 7. The maximum possible
score was 54.

Please put away all books, calculators, electronic games, cell phones, pagers,
.mp3 players, PDAs, and other electronic devices. You may refer to a single
2-sided sheet of notes. Explain your answers in full English sentences as
is customary and appropriate. Your paper is your ambassador when it is
graded. At the conclusion of the exam, please hand in your paper to your
GSI.

1. Let T be a linear operator on a vector space V . Suppose that v1, . . . , vk are
vectors in V such that T (vi) = λivi for each i, where the numbers λ1, . . . , λk

are distinct elements of F . If W is a T -invariant subspace of V that contains
v1 + · · ·+ vk, show that W contains vi for each i = 1, . . . , k.

See my solutions for homework set #11.

2. Assume that T : V → W is a linear transformation between finite-dimensional
vector spaces over F . Show that T is 1-1 if and only if there is a linear transfor-
mation U : W → V such that UT is the identity map on V .

One direction is obvious; if UT = 1V and T (v) = 0, then v = U(T (v)) = 0, so
that T must be injective. The harder direction is to construct U when T is given
as 1-1. Choose a basis v1, . . . , vn of V and let wi = T (vi) for each i. Because
T is injective, the wi are linearly independent. Complete w1, . . . , wn to a basis
w1, . . . , wn;wn+1, . . . , wm of W . We can define U : W → V by declaring the
images U(wi) of the basis vectors wi; if we want wi to go to xi ∈ V , then we
define U(

∑
aiwi) =

∑
aixi. We take xi = vi for i = 1, . . . , n and take (for

instance) xi = 0 for i > n. It is clear that (UT )(vi) = vi for each basis vector vi

of V . It follows from this that UT is the identity map on V .

3. Let T be a self-adjoint linear operator on a finite-dimensional inner product
space V (over R or C). Show that every eigenvalue of T is a positive real number
if and only if 〈T (x), x〉 is a positive real number for all non-zero x ∈ V .



Because T is self-adjoint, there is an orthonormal basis β of V in which T is
diagonal. Let λ1, . . . , λn be the diagonal entries of the diagonal matrix [T ]β . The
λi are real numbers even if V is a complex vector space. The issue is whether
or not these real numbers are all positive. If x has coordinates a1, . . . , an in
the basis β, then 〈T (x), x〉 =

∑
i

|ai|2λi. In particular, we can take x to be

the ith element of β, so that its ith coordinate is 1 and its other coordinates
are 0. Then 〈T (x), x〉 = λi. Thus if 〈T (x), x〉 is always positive, λi is positive for
each i. Conversely, if the λi are positive, the sum

∑
i

|ai|2λi is non-negative for

all n-tuples (a1, . . . , an) and is positive whenever (a1, . . . , an) is non-zero, i.e.,
whenever the vector x corresponding to (a1, . . . , an) is a non-zero element of V .

4. Let V be an inner product space over F and let X and Y be subspaces of V
such that 〈x, y〉 = 0 for all x ∈ X, y ∈ Y . Suppose further that V = X + Y .
Prove that Y coincides with X⊥ = { v ∈ V | 〈x, v〉 = 0 for all x ∈ X }.

Under the assumptions of the problem, everything in Y is perpendicular to
everything in X, so we have Y ⊆ X⊥. If v is perpendicular to all vectors in X,
we must show that v lies in Y . Because V = X +Y , we may write v = x+y with
x ∈ X, y ∈ Y . We have 0 = 〈v, x〉 = 〈x + y, x〉 = 〈x, x〉 + 〈y, x〉 = 〈x, x〉 + 0 =
〈x, x〉. Because 〈x, x〉 = 0, x = 0 by the axioms of an inner product. Hence
v = y does indeed lie in Y . (This problem was inspired by a comment of Chu-
Wee Lim, who pointed out to me that the definition on page 398 of the book,
and the comments following the definition, are extremely bizarre.)

5. Let V be the space of polynomials in t with real coefficients. Use the Gram–
Schmidt process to find non-zero polynomials p0(t), p1(t), p2(t), p3(t) in V such

that

∫ 1

−1

pi(t)pj(t) dt = 0 for 0 ≤ i < j ≤ 3. (It may help to note that

∫ 1

−1

ti dt =

0 when i is an odd positive integer.)

There is an implicit inner product here: 〈f, g〉 =
∫ 1

−1

f(t)g(t) dt. The vectors 1,

t, t2, and t3 are linearly independent elements of V and we can apply G–S to
this sequence of vectors to generate an orthogonal set of vectors; this is what the
problem asks for. The computations, which I won’t reproduce, are easy because
of the remark about the integrals of odd powers of t. The answer that I got is

that the pi are in order: 1, t, t2 − 1
3
, t3 − 3

5
t. I did these computations in class;

the pi are called Legendre polynomials.
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6. Let A be an n×n matrix over F and let At be the transpose of A. Using the
equality “row rank = column rank,” show for each λ ∈ F that the vector spaces
{x ∈ Fn |Ax = λx } and {x ∈ Fn |Atx = λx } have the same dimension.

Combining the “row rank = column rank” theorem with the formula relating
rank and nullity, we see that the linear transformations LA and LAt have equal
nullities. These nullities are the dimensions of the null spaces of the two trans-
formations; meanwhile, the null spaces are exactly the two vector spaces of the
problem in the case λ = 0. To treat the case of arbitrary λ, we have only to
replace A by A− λIn.

7. Let A be an element of the vector space Mn×n(F ), which has dimension
n2 over F . Show that the span of the set of matrices { In, A, A2, A3, . . . } has
dimension ≤ n over F .

Direct application of Cayley–Hamilton: the set { In, A, A2, A3, . . . , An−1 } has
the same span as the full set of all powers of A.
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