
Math 110
Notes for the lecture on February 8, 2005

The lecture will be full of matrices and formulas. Here is a sketch of what I intend to talk
about. Esepcially if you read this document before the lecture, you can take no notes or
fewer notes than usual.

We work with vector spaces over a field F . Most are finite-dimensional. Take vector
spaces V and W of finite dimension and suppose that we fix ordered bases β and γ of
V and W , respectively. We have a beautiful association L(V,W ) → Mm×n(F ) given by
T 7→ [T ]γβ . The source and target L(V,W ) and Mm×n(F ) are F -vector spaces in a natural
way: we know how to add matrices and how to multiply matrices by scalars. Similarly,
we know how to add linear transformations and multiply them by scalars—we discussed
this on February 4 (Thursday). The first point is that T 7→ [T ]γβ is a linear map (= linear
tranformation) between vector spaces. This means that the sum of two T s goes to the sum
of their matrices and that [aT ]γβ = a[T ]γβ for a ∈ F and T ∈ L(V,W ). These identities
come from the definition of [T ]γβ that we gave on Thursday.

The claim is that T 7→ [T ]γβ is an isomorphism of F -vector spaces. A linear map is said to
be an isomorphism when it’s invertible. This means that it’s 1-1 and onto; we discussed
invertible maps in class on Thursday. To see that the map is 1-1, we have to check that its
null space is 0, i.e., that [T ]γβ = 0 implies that T = 0. If [T ]γβ = 0, then the construction
of [T ]γβ shows that T (vj) = 0 for all basis vectors vj ∈ β. Since T is linear, T = 0. To
see that the map is surjective (onto), we suppose that we are given a matrix A = (aij)
in Mm×n(F ). For each j, 1 ≤ j ≤ n, let yj be the element of W dictated to us by the
jth column of A, namely

∑m
i=1 aijwi, and then let T be the unique linear map V → W

that sends vj to yj . (The existence of this map was discussed last week, especially on
Thursday.) It is clear from the definition of [T ]γβ that this matrix coincides with the given
matrix A.

One consequence is that the dimension of L(V,W ) is mn, since mn is clearly the dimension
of the space of m×n matrices over F . Remember that isomorphic vector spaces have equal
dimensions.

By the way, here’s a digression. If V has dimension n, then we get an isomorphism Fn ∼→ V
by (a1, . . . , an) 7→

∑n
i=1 aivi ∈ V . If V and V ′ both have dimension n, then they are each

isomorphic to Fn, so they are isomorphic to each other. Two finite-dimensional vector
spaces are isomorphic if and only if they have equal dimensions. If V and W are vector
spaces, we could write V ∼ W as an abbreviation for the statement “there exists some
isomorphism from V to W .” The statement means that V and W are isomorphic. The
relation of being isomorphic is an equivalence relation. If T : V → W is a linear map
between finite dimensional vector spaces of the same dimension and if U : W → V is a
linear map such that UT = 1V , then T and U are invertible and they are inverses of each
other. End of digression.
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The next theme is that of matrices of compositions. If we have T : V → W and U : W → Z,
we get UT (also written U ◦ T ), which means “T followed by U .” It’s a map V → Z and
we know by now that it’s a linear map. Formally, we could describe composition as a
mapping

L(W,Z)× L(V,W ) → L(V,Z).

Assume that we have ordered bases

α = {v1, . . . , vn}, β = {w1, . . . wm}, γ = {z1, . . . , zd}

of V , W and Z, respectively. The big claim is as follows:

[UT ]γα = [U ]γβ [T ]βα.

On the right-hand side we have the product of a d×m matrix and an m× n matrix. On
the left we have a d × n matrix. The dimensions are compatible with our identity being
both meaningfull and true. It remains to compute things and check that everything works.

For the matrix T , we use familiar notation. For each j = 1, . . . , n, we write Tvj =∑m
i=1 aijwi and then say that [T ]βα = A with A = (aij). Note that I write Tvj instead of

T (vj); omiting parentheses looks good here. Define [U ]γβ = B = (bki) by the analogous

formula; namely, write Uwi =
∑d

k=1 bkizk for each i. Finally, introduce [UT ]γα = C = (ckj)
by writing UT (vj) =

∑
k ckjzk for each j. Because of the linear independence of the zk,

the ckj are the unique elements of F that satisfy these identities. What we need to check
is that C = BA, which means that ckj =

∑
i bkiaij for each k and j. It is enough to show

that
UT (vj) =

∑
k

∑
i

bkiaij zk

for each j.

Now
UT (vj) = U(

∑
i

aijwi) =
∑

i

aijU(wi) =
∑

i

aij

∑
k

bkizk.

After rearranging the right-hand sum a tiny bit, we get the desired formula.

The formula that we have just proved actually specializes to a formula that we proved in
the waning minutes of class on Thursday. This is interesting: Suppose that x is a vector
in an n-dimensional vector space V . Consider the linear map T : F → V taking a ∈ F to
ax ∈ V . The vector space F = F 1 has the standard basis {1}. If we use this 1-element
basis and an n-element basis β = {v1, . . . , vn} of V , we get a matrix [T ]β{1}, which is in
fact an n× 1 matrix—it’s a column of length n. We see immediately from the definitions
that [T ]β{1} = [x]β , where the right-hand side of the equation is the column that expresses
x in terms of β. Now suppose that U : V → W is a linear transformation and that we
have an ordered basis γ of W . Then we may write

[UT ]γ{1} = [U ]γβ [T ]β{1}
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by the general formula that we’ve proved. Now UT is the map F → W taking a to U(x),
so it’s the analogue of T with x ∈ V replaced by Ux ∈ W . Thus the displayed formula
becomes [Ux]γ = [U ]γβ [x]β , which is what we proved in class at the end of Thursday’s
lecture. (The map from V to W was called T instead of U in that lecture.)

We have seen that linear transformations give matrices and that every matrix of the right
size comes from an element of L(V,W ) when we have in the picture two spaces V and W
with fixed bases β and γ. Another thing we can do is to take a matrix cold and not have
any vector spaces around. Take A ∈ Mm×n(F ) and notice that left-multiplication by A
gives a map Fn → Fm, x 7→ Ax. Here, we think of Fn and Fm as spaces of column
vectors. This map Fn → Fm is called LA by our authors; the “L” could stand for “left”
(as in multiplication on the left) or “linear.” I’m pretty sure that they had “linear” in
mind. It’s easy to check that LA is a linear map; this follows mainly from the distributive
law for matrix multiplication, since we have to recognize that A(x + x′) = Ax + Ax′. If β
and γ are the standard bases on Fn and Fm, then [LA]γβ = A. (You all probably remember
that the standard basis vectors have one 1 and otherwise consist of 0s.)

Now we get to a super-important topic: change of basis. This really is just an application
of compositions. Suppose that we have a map T : V → W between finite-dimensional
F -vector spaces and that V and W have bases β and γ. The wrinkle now is that we
assume that V has a second, alternative basis β′. We would like to compare A := [T ]γβ and
[T ]γβ′ . Imagine that we understand how to write β′ in terms of β. In other words, imagine
that β = {v1, . . . , vn} and β′ = {v′1, . . . , v′n} and that we know how to express each v′j as a
linear combination of the vi: v′j =

∑
i qijvi for each j. The key insight is that the matrix

Q = (qij) is nothing but [1V ]ββ′ ; this really follows pretty directly from definitions in our
setup. Using the formula for the matrix of a composite, we get

[T ]γβ′ = [T ◦ 1V ]γβ′ = [T ]γβ [1V ]ββ′ = AQ.

When we change from β to β′, we multiply A = [T ]γβ on the right by the change-of-basis
matrix Q.

Assume finally that W has a second basis γ′ and let R = [1W ]γγ′ be the analogue of Q; it’s
the matrix that expresses the vectors in γ′ in terms of those of γ. We see similarly that

[T ]γ
′

β′ = [1W ]γ
′

γ [T ]γβ [1V ]ββ′ .

In the product on the right-side of the equation, we have already understood the second
and third factors and need to identify the first factor [1W ]γ

′

γ . For various reasons that
I’m not motivatived to type into this file, [1W ]γ

′

γ is nothing but the inverse of the matrix
R = [1W ]γγ′ . Thus the matrix of T with respect to the new bases β′ and γ′ is simply
R−1AQ where R and Q are the transition matrices between the two βs and the two γs (as
described above) and A is the matrix in the original bases.
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