Math 110
Notes for the lecture on February 8, 2005

The lecture will be full of matrices and formulas. Here is a sketch of what I intend to talk
about. Esepcially if you read this document before the lecture, you can take no notes or
fewer notes than usual.

We work with vector spaces over a field F. Most are finite-dimensional. Take vector
spaces V and W of finite dimension and suppose that we fix ordered bases 3 and v of
V and W, respectively. We have a beautiful association L(V,W) — M,,xn(F') given by
T+ [T]}. The source and target L(V, W) and My, x,(F) are F-vector spaces in a natural
way: we know how to add matrices and how to multiply matrices by scalars. Similarly,
we know how to add linear transformations and multiply them by scalars—we discussed
this on February 4 (Thursday). The first point is that 7'~ [T]} is a linear map (= linear
tranformation) between vector spaces. This means that the sum of two T's goes to the sum
of their matrices and that [aT]} = a[T]) for a € F' and T € L(V,W). These identities

come from the definition of [T]g that we gave on Thursday.

The claim is that T — [T]g is an isomorphism of F-vector spaces. A linear map is said to
be an isomorphism when it’s invertible. This means that it’s 1-1 and onto; we discussed
invertible maps in class on Thursday. To see that the map is 1-1, we have to check that its
null space is 0, i.e., that [T]} = 0 implies that T' = 0. If [T]} = 0, then the construction
of [T]} shows that T'(v;) = 0 for all basis vectors v; € 3. Since T is linear, 7' = 0. To
see that the map is surjective (onto), we suppose that we are given a matrix A = (a;;)
in M,xn(F). For each j, 1 < j < n, let y; be the element of W dictated to us by the
jth column of A, namely Y " a;;w;, and then let T' be the unique linear map V. — W
that sends v; to y;. (The existence of this map was discussed last week, especially on
Thursday.) Tt is clear from the definition of [T]} that this matrix coincides with the given

matrix A.

One consequence is that the dimension of L(V, W) is mn, since mn is clearly the dimension
of the space of m x n matrices over F'. Remember that isomorphic vector spaces have equal
dimensions.

By the way, here’s a digression. If V has dimension n, then we get an isomorphism F" = V
by (a1,...,an) — Y i av; € V. If V and V' both have dimension n, then they are each
isomorphic to F™, so they are isomorphic to each other. Two finite-dimensional vector
spaces are isomorphic if and only if they have equal dimensions. If V and W are vector
spaces, we could write V' ~ W as an abbreviation for the statement “there exists some
isomorphism from V to W.” The statement means that V and W are isomorphic. The
relation of being isomorphic is an equivalence relation. If " : V' — W is a linear map
between finite dimensional vector spaces of the same dimension and if U : W — V is a
linear map such that UT = 1y, then T and U are invertible and they are inverses of each
other. End of digression.



The next theme is that of matrices of compositions. If we haveT': V — Wand U : W — Z,
we get UT (also written U o T'), which means “T" followed by U.” It’s a map V — Z and
we know by now that it’s a linear map. Formally, we could describe composition as a
mapping

LW, Z)x L(V,W) — L(V,Z).

Assume that we have ordered bases

a={vy,...,vn}, OB=Aw,...wn}, vY={21,...,24}

of V, W and Z, respectively. The big claim is as follows:

o

UT]3, = [UI3IT]a

On the right-hand side we have the product of a d x m matrix and an m x n matrix. On
the left we have a d x n matrix. The dimensions are compatible with our identity being
both meaningfull and true. It remains to compute things and check that everything works.

For the matrix 7', we use familiar notation. For each j = 1,...,n, we write Tv; =
S ai;w; and then say that [T]2 = A with A = (a;;). Note that I write Tv; instead of
T'(vj); omiting parentheses looks good here. Define [U]} = B = (bx;) by the analogous
formula; namely, write Uw; = Zzzl brizi, for each i. Finally, introduce [UT]) = C = (ck;)
by writing UT'(vj) = >, ckjzk for each j. Because of the linear independence of the z,
the ci; are the unique elements of F' that satisfy these identities. What we need to check
is that C' = BA, which means that cx; = ), brias; for each k and j. It is enough to show

that
UT(vj) = Z Z britij 2
ki

for each j.

Now

UT(U]') = U(Z aijwi) = Z CLZJU(ZUZ) = Z Qij Z bkizk.

After rearranging the right-hand sum a tiny bit, we get the desired formula.

The formula that we have just proved actually specializes to a formula that we proved in
the waning minutes of class on Thursday. This is interesting: Suppose that x is a vector
in an n-dimensional vector space V. Consider the linear map T : F' — V taking a € F' to
ax € V. The vector space F' = F! has the standard basis {1}. If we use this 1-element
basis and an n-element basis 8 = {v1,...,v,} of V, we get a matrix [T]?l}, which is in
fact an n x 1 matrix—it’s a column of length n. We see immediately from the definitions
that [T]? = [z] 3, where the right-hand side of the equation is the column that expresses
x in terms of #. Now suppose that U : V' — W is a linear transformation and that we
have an ordered basis v of W. Then we may write

[UT]},y = [UT5[T)

B
{1} pL= {1}
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by the general formula that we’ve proved. Now UT is the map F — W taking a to U(z),
so it’s the analogue of T' with x € V replaced by Uz € W. Thus the displayed formula
becomes [Uz], = [U]}[z]s, which is what we proved in class at the end of Thursday’s
lecture. (The map from V to W was called T instead of U in that lecture.)

We have seen that linear transformations give matrices and that every matrix of the right
size comes from an element of £(V, W) when we have in the picture two spaces V and W
with fixed bases # and 7. Another thing we can do is to take a matrix cold and not have
any vector spaces around. Take A € M,,«,(F) and notice that left-multiplication by A
gives a map F" — F™, x +— Ax. Here, we think of F™ and F"™ as spaces of column
vectors. This map F™ — F" is called L4 by our authors; the “L” could stand for “left”
(as in multiplication on the left) or “linear.” I'm pretty sure that they had “linear” in
mind. It’s easy to check that L 4 is a linear map; this follows mainly from the distributive
law for matrix multiplication, since we have to recognize that A(z + a') = Az + Az'. If 3
and y are the standard bases on F™ and F™, then [La]; = A. (You all probably remember
that the standard basis vectors have one 1 and otherwise consist of 0s.)

Now we get to a super-important topic: change of basis. This really is just an application
of compositions. Suppose that we have a map T : V — W between finite-dimensional
F-vector spaces and that V and W have bases § and . The wrinkle now is that we
assume that V" has a second, alternative basis 3'. We would like to compare A := [T} and
[T]g,. Imagine that we understand how to write 5’ in terms of 3. In other words, imagine
that 3 = {v1,...,vn} and B’ = {v},..., v, } and that we know how to express each v} as a

linear combination of the v;: v = )7, g;jv; for each j. The key insight is that the matrix

@ = (gi;) is nothing but [1V]g,; this really follows pretty directly from definitions in our
setup. Using the formula for the matrix of a composite, we get

1)}, = [T o1y}, =[T1}[v]} = AQ.

When we change from 3 to (', we multiply A = [T]g on the right by the change-of-basis
matrix ).

Assume finally that W has a second basis 4" and let R = [1W]3, be the analogue of Q); it’s
the matrix that expresses the vectors in 4" in terms of those of v. We see similarly that

11 = L]y (T30 15

In the product on the right-side of the equation, we have already understood the second
and third factors and need to identify the first factor [lw]z/. For various reasons that
I’'m not motivatived to type into this file, [1W]Z/ is nothing but the inverse of the matrix
R = HWH" Thus the matrix of T" with respect to the new bases 3 and +' is simply
R™1AQ where R and Q are the transition matrices between the two (s and the two ~s (as
described above) and A is the matrix in the original bases.



