
Math 110
Notes for the lecture on February 10, 2005

The first part of the lecture will correspond to the end of the notes that were posted for
February 8. I will discuss change of basis. For details on this, see the notes for February
8. The situation there is that we have a linear T : V → W , where V and W are finite-
dimensional. We assume that V has bases β and β′ and that, analogously, W has bases γ
and γ′. Imagine that we can write β′ in terms of β and γ′ in terms of γ. Then there are
three obvious matrices lying around:

A = [T ]γβ , Q = [1V ]ββ′ , R = [1W ]γγ′ .

Then the formula to remember is that

[T ]γ
′

β′ = R−1AQ.

As I said, details are in the last set of notes.

A very important example is that where W = V , γ = β and γ′ = β′. The book writes
[T ]β for [T ]ββ and employs analogous notation for [T ]β

′

β′ . We then get the formula

[T ]β′ = R−1[T ]βR,

which is very important. The formula states that [T ]β′ is the conjugate of [T ]β by R; the
word “conjugate” is undoubtedly familiar to you if you’ve taken Math 113.

For an example, take F to be the field of complex numbers and let V = W = F 2. Let

β be the standard basis of V . Let a and b be complex numbers; let A =
(

a −b
b a

)
. Let

T = LA. Then of course [T ]β = A. Let β′ be the alternative basis {(1,−i), (1,+i)}. Then
we should be able to check in class that [T ]β′ is the 2× 2 diagonal matrix whose diagonal

entries are a + bi and a− bi. The matrix R here is
(

1 1
−i i

)
.

Just to answer someone’s question: we are not going to discuss §2.7. We will, however,
discuss §2.6. This section concerns the all-important topic of dual spaces. If V is an
F -vector space, its dual V ∗ is the space L(V, F ) of linear transformations V → F . Such
linear transformations are called linear functionals. If V is finite dimensional and has
(ordered) basis β = {v1, . . . , vn}, then there are n different elements of V ∗ staring us in
the face. These are the coordinate functions f1, . . . , fn that are defined by the basis β.
Namely, for v ∈ V , we may write uniquely v =

∑n
i=1 aivi with ai ∈ F . The functional fi

maps v to the coefficient ai. It is easy to see that fi is linear. It satisfies the key formula
fi(vj) = δij , where δij is the Kronecker delta function, which by definition is 1 when i = j
and 0 when i and j are distinct.
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For f ∈ V ∗, we see that f is determined by the numbers f(vi) for i = 1, . . . , n. This follows
from a general theorem, which states that a linear map T : V → W is determined by the
vectors T (vi) in W . Explicitly here: if v =

∑
aivi as before, then

f(v) =
n∑

i=1

aif(vi).

Once we know the f(vi) we have a recipe for finding f(anything): write each vector of V
in terms of the basis vectors and use the formula that’s displayed just above.

As the book points out, V ∗ has dimension n when V has dimension n. Indeed, L(V,W )
is known by us to have dimension nm when V has dimension n and W has dimension m.
Here, W is the 1-dimensional space F = F 1. A more precise result is that the fi form a
basis of V . This basis depends on β = {v1, . . . , vn} (of course) and is said to be the basis
of V ∗ that is dual to the basis β. The basis dual to β is denoted β∗.

Let’s prove this result. First, we should check that the fi are linearly dependent. Suppose
that we have

∑
i cifi = 0. Then, by definition, we have that

∑
i cifi(v) = 0 for all v ∈ V . If

we put v = vj , where j is a number between 1 and n, then the sum collapses to cj because
of the Kronecker delta business. Thus we have cj = 0 for each j; thus the vanishing linear
combination

∑
i ci was the trivial linear combination (with all coefficients 0), and we have

established the required linear independence. Now let’s show that each f ∈ V ∗ is a linear
combination of the fi. Let f be given, and set ci = f(vi) for each i. Then the claim is that
f =

∑
i cifi. To see this, we need to show that the difference between the two sides of the

equation, which is an element of V ∗, vanishes on every v ∈ V . (This forces the difference
to be the 0 element of V ∗.) Said differently, we want the null space of the difference to be
all of V . However, the Kronecker delta business shows that the null space of the difference
contains each of the basis vectors vj . Since the null space is a subspace of V , and since
the basis vectors span V , the null space of the difference is indeed the entire vector space.

The next topic concerns duals of linear maps T : V → W , where V and W are finite-
dimensional. There’s a natural map W ∗ → V ∗, which is composition with T : g ∈ W ∗ 7→
gT = g ◦T ∈ V ∗. This map is called T ∗ by most authors and T t be our authors. We’ll call
it T t. The lower-case t means “transpose.” The reason for this terminology becomes clear
if V is given with a basis β and W with a basis γ. Then we have two matrices at hand:
[T ]γβ and [T t]β

′

γ′ . Note that the first is an m×n matrix, while the second is an n×m matrix.
The fundamental result is that the two matrices are transposes of each other. This result
is proved by direct computation; cf. p. 121 of our text. I’ll do the computation at the
board; keep those pencils sharp.
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