This was an $80-$ minute exam, $3: 40-5 \mathrm{PM}$. There were 30 points on the test, with two questions being worth 7 points and two being worth 8 points. The explanations that follow are intended to communicate the main points of each problem but might be a little skeletal. (They're more like extended hints than complete solutions.)

1. Let $\mathcal{P}(\mathbf{R})$ be the real vector space consisting of all polynomials with coefficients in \mathbf{R}. Let $D: \mathcal{P}(\mathbf{R}) \rightarrow \mathcal{P}(\mathbf{R})$ be the linear map $f(x) \mapsto f^{\prime}(x)$ that takes a polynomial to its derivative.
(a.) Describe the null space and the range of D.

The null space is the space of polynomials with derivative $=0$. Those are the constant polynomials. The range is all of $\mathcal{P}(\mathbf{R})$ since every polynomial is the derivative of some polynomial. (We know how to integrate.)
(b.) Find a subspace U of $\mathcal{P}(\mathbf{R})$ such that $\mathcal{P}(\mathbf{R})=U \oplus$ null D.

We can take U to be the space of polynomials whose constant terms are 0 . The intersection of U and null D is $\{0\}$ because the only constant in U is the polynomial 0 . The sum of U and the null space is all of $\mathcal{P}(\mathbf{R})$ because each polynomial is the sum of its constant term and a polynomial whose constant term is 0 .
2. Let $T: V \rightarrow W$ be a linear map between \mathbf{F}-vector spaces.
(a.) Suppose that null $T=\{0\}$ and that $\left(v_{1}, \ldots, v_{n}\right)$ is a linearly independent list in V. Show that $\left(T v_{1}, \ldots, T v_{n}\right)$ is linearly independent in W.

I think that this is a good problem because it requires knowledge of the definitions and some proof-writing skills. To show that $\left(T v_{1}, \ldots, T v_{n}\right)$ is linearly independent in W, we start with the equation $0=a_{1} T v_{1}+a_{2} T v_{2}+\cdots+a_{n} T v_{n}$ and seek to show that the coefficients a_{i} are all 0 . Because T is linear, we can rewrite the equation as

$$
0=T\left(a_{1} v_{a}+\cdots+a_{n} v_{n}\right)
$$

Since null $T=\{0\}$, the vector $a_{1} v_{a}+\cdots+a_{n} v_{n}$ is 0 . Since $\left(v_{1}, \ldots, v_{n}\right)$ is a linearly independent list in V, all a_{i} are 0 .
(b.) Assume that $\left(T v_{1}, \ldots, T v_{n}\right)$ is linearly independent in W for all linearly independent lists $\left(v_{1}, \ldots, v_{n}\right)$ in V. Show that null $T=\{0\}$.

The assumption is that T sends independent lists to independent lists-there is no restriction on the size of the lists. In particular, it sends independent lists of length 1 to
independent lists of length 1 . Note that (v) is linearly independent if and only if v is nonzero! Hence if v is non-zero, (v) is linearly independent; thus $(T v)$ is linearly independent, so $T v$ is non-zero. Therefore the null space of T is $\{0\}$, which s what we wanted to prove.
3. Let V be an \mathbf{F}-vector space such that $\operatorname{dim} U \leq 4$ for all finite-dimensional subspaces U of V. Prove that V is finite-dimensional and that its dimension is at most 4.

This is kind of a silly problem (sorry). If V is not finite-dimensional, then there are independent lists $\left(v_{1}, \ldots, v_{n}\right)$ in V of arbitrary length. (We proved this in homework and discussed the proof in office hours a lot. This is a good place to cite a homework problem; alternatively, you could recapitulate the proof that there are such lists.) If $\left(v_{1}, \ldots, v_{n}\right)$ is linearly independent in V, its span is a subspace of V of dimension n. By the assumption of the problem, n can be at most 4 , so we have a contradiction.
4. Let $S: V \rightarrow W$ and $T: W \rightarrow V$ be linear maps between finite-dimensional \mathbf{F}-vector spaces. Suppose that TS is the identity map on V.
(a.) Prove that T is surjective (onto) and that S is injective (1-1).

This has little to do with linear algebra: it's just a fact about composed functions. The hypothesis is that $T(S(v))=v$ for all v in V. We see that the range of T is all of v because each v is T of something, namely v is $T(S(v))$. In a similar vein, if $S(v)=S\left(v^{\prime}\right)$, we get $v=v^{\prime}$ by applying T to both sides of the equation $S(v)=S\left(v^{\prime}\right)$. Hence S is indeed 1-1.
(b.) Show that we have $\operatorname{dim} V \leq \operatorname{dim} W$.

We can use, for instance, the fact that the dimension of V is the sum of the nullity of S and the rank of S. Since S is $1-1$, the nullity is 0 ; thus $\operatorname{dim} V=\operatorname{rank} S$. Since the range of S is a subspace of W, the dimension of the range is at most the dimension of W. In other words, as we discussed in class, $\operatorname{rank} S \leq \operatorname{dim} W$. We thus have the desired inequality $\operatorname{dim} V \leq \operatorname{dim} W$.

