Math 110

PROFESSOR KENNETH A. RIBET

Final Examination
December 20, 2008
\section*{12:40-3:30 PM, 101 Barker Hall}

Please put away all books, calculators, and other portable electronic devices-anything with an ON/OFF switch. You may refer to a single 2-sided sheet of notes. When you answer questions, write your arguments in complete sentences that explain what you are doing: your paper becomes your only representative after the exam is over. All vector spaces are finite-dimensional over the field of real numbers or the field of complex numbers (except for the space $\mathcal{P}(\mathbf{R})$ of all real polynomials, which occurs in the first problem).

Problem	Possible points
1	9 points
2	6 points
3	7 points
4	7 points
5	7 points
6	7 points
7	7 points
Total:	50 points

1. Exhibit examples of:
(a.) A linear operator $D: \mathcal{P}(\mathbf{R}) \rightarrow \mathcal{P}(\mathbf{R})$ and a linear operator $\mathcal{I}: \mathcal{P}(\mathbf{R}) \rightarrow \mathcal{P}(\mathbf{R})$ such that $D \mathcal{I}$ is the identity but $\mathcal{I} D$ is not the identity.
(b.) A (non-zero) generalized eigenvector that is not an eigenvector.
(c.) A normal operator on a positive-dimensional real vector space whose characteristic polynomial has no real roots.

In the first part, " D " was intended to evoke differentiation and " \mathcal{I} " was intended to suggest integration (definition integration with constant term 0 , for example). It's hard to give "answers" to these questions because different people will have different examples.
2. On the vector space $\mathcal{P}_{2}(\mathbf{R})$ of real polynomials of degree ≤ 2 consider the inner product given by

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Apply the Gram-Schmidt procedure to the basis $\left(1, x, x^{2}\right)$ to produce an orthonormal basis of $\mathcal{P}_{2}(\mathbf{R})$.

When you apply the Gram-Schmidt progress to the sequence of polynomials $1, x, x^{2}, x^{3}, \ldots$, the resulting sequence of orthonormal polynomials is the sequence of Legendre polynomials. According to the Wikipedia article on Orthogonal Polynomials, the first three of them are $1, x$ and $\left(3 x^{2}-1\right) / 2$. I haven't done this calculation lately, but I'll be wading through 38 such calculations in the very near future.
3. Suppose that P is a linear operator on V satisfying $P^{2}=P$ and let v be an element of V. Show that there are unique $x \in$ null P and $y \in$ range P such that $v=x+y$.

First, let $x=v-P v$ and $y=P v$. Then clearly $v=x+y$, and $y=P v$ is in the range of P. Since $P x=P v-P^{2} v=P v-P v=0, x$ is in the null space of P. Secondly, suppose that $v=x+y$ with $x \in$ null P and $y \in$ range P. Then $P v=P x+P y=0+P y=0$. Further, $P y=y$ because y is in the range of P. Indeed, if $y=P w$, then $P y=P(P w)=P^{2} w=P w=y$. Hence $P v=y$, which implies that $x=v-y=v-P v$. In other words, the x and y that we are dealing with are the ones that we knew about already. Conclusion: x and y are unique. Note: this was Exercise 21 of Chapter 5.
4. Let T be a linear operator on an inner product space for which $\operatorname{trace}\left(T^{*} T\right)=0$. Prove that $T=0$.

Choose an orthonormal basis for the space, and let $A=\left[a_{i j}\right]$ be the matrix of T in this basis. The matrix of T^{*} is the conjugate-transpose A^{*} of A. The matrix of $T^{*} T$ is then $A^{*} A$; for each $i, i=1, \ldots, n$, the (i, i) th entry of this matrix is $\sum_{j} \bar{a}_{j i} a j i=\sum_{j}\left|a_{j i}\right|^{2}$. The trace of $A^{*} A$ is thus $\sum_{i, j}\left|a_{j i}\right|^{2}$. Each term $\left|a_{j i}\right|^{2}$ is a non-negative real number. If the sum is 0 , then each term is 0 . This means that all $a_{i j}$ are 0 , i.e., that $A=0$. If $A=0$, then of course $T=0$. Note: See problem 18 of Chapter 10, where a somewhat more sophisticated proof of the indicated assertion was contemplated by the author of our book.
5. If X and Y are subspaces of V with $\operatorname{dim} X \geq \operatorname{dim} Y$, show that there is a linear operator $T: V \rightarrow V$ such that $T(X)=Y$.

Let $d=\operatorname{dim} Y$ and let $n=\operatorname{dim} V$. Choose a basis $\left(v_{1}, \ldots, v_{e}\right)$ of X; note that $e \geq d$ by hypothesis. Complete this basis to a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V. Choose a basis $\left(y_{1}, \ldots, y_{d}\right)$ of Y. We define $T: V \rightarrow V$ so that $T\left(v_{i}\right)=y_{i}$ for $i=1, \ldots, d$ and $T\left(v_{i}\right)=0$ for $i>d$. Namely, if $v=\sum_{i=1}^{n} a_{i} v_{i}$, we set $T v=\sum_{i=1}^{d} a_{i} y_{i}$. The range of T is then the span of the y_{i}, which is Y. Already, however, the span of $\left(v_{1}, \ldots, v_{d}\right)$ is mapped onto Y by T. Thus X is mapped onto Y by T.
6. Let N be a linear operator on the inner product space V. Suppose that N is both normal and nilpotent. Prove that $N=0$. [The case $F=\mathbf{C}$ will probably be easier for you. Do it first do ensure partial credit.]

In the complex case, we can invoke the spectral theorem and find an orthonormal basis in which N has a diagonal matrix representation. Since some power of N is 0 , the diagonal entries are all 0 . Hence $N=0$, as required. In the real case, the required assertion follows from the statement of Exercise 24 of Chapter 8, or-even better-from Exercise 7 of Chapter 7. (You have Axler's solution to that exercise.) Alternatively, we can argue (cheat) as follows: choose an orthonormal basis for the space, so that N becomes a nilpotent matrix of real numbers that commuters with its transpose. We can think of this as a nilpotent matrix of complex numbers that commutes with its adjoint. Such a matrix corresponds to a complex normal nilpotent operator, which we already know to be 0 . Hence it's 0 .
7. Suppose n is a positive integer and $T: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ is defined by

$$
T\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\cdots+x_{n}, \ldots, x_{1}+\cdots+x_{n}\right)
$$

in other words, T is the linear operator whose matrix (with respect to the standard basis) consists of all 1's. Find all eigenvalues and eigenvectors of T.

This was Exercise 7 of Chapter 5. You should have a solution available to you.

