1. Let A be an $n \times n$ matrix over a field F. If $A^{2}=A$, show that A is similar to a diagonal matrix whose diagonal entries are all 0 or 1 .
2. Let $T: V \rightarrow W$ be a linear transformation and let X be a subspace of W. Assume that V and W are finite-dimensional. Let $T^{-1}(X)$ be the inverse image of X under T, i.e., the set of vectors in V that map to X. Recall that $T^{-1}(X)$ is a subspace of V. Show that the dimension of this subspace is at least $\operatorname{dim} V-\operatorname{dim} W+\operatorname{dim} X$.
3. Let $T: V \rightarrow V$, where V is finite-dimensional over F. Let $f(t)$ be the characteristic polynomial of T. Show that $f(t)$ factors non-trivially over F if and only if there is a subspace W of V, other than $\{0\}$ and V, such that $T(W) \subseteq W$.
4. If A and B are $n \times n$ matrices that commute with each other, and if A and B are both diagonalizable, show that A and B are simultaneously diagonalizable.
5. Let $A \in \mathbf{M}_{n \times n}(\mathbf{C})$ be a matrix for which $\operatorname{tr} A^{i}=0$ for $i=1,2, \ldots, n$. Show that A is nilpotent, i.e., that $A^{k}=0$ for some $k \geq 1$.
6. Let p, q, r and s be polynomials over F of degree ≤ 3. If all four polynomials vanish at 1 , are the polynomials necessarily linearly dependent over F ? If all four polynomials have the value 1 at 0 , are they necessarily linearly dependent over F ?
7. Suppose that $A=\left(a_{i j}\right)$ is a complex $n \times n$ matrix. Assume that $a_{i j}$ is non-zero whenever $i=j+1$ and that $a_{i j}=0$ when $i \geq j+2$. Show that A has exactly one Jordan block for each of its eigenvalues.
8. If A and B are $n \times n$ matrices, show that the two matrices $A B$ and $B A$ have the same eigenvalues. (If λ is an eigenvalue of one, it's an eigenvalue of the other.)
9. Let A be an $n \times n$ complex matrix with trace 0 . Show that A is similar to a matrix whose diagonal entries are all 0 .
10. Let B be a 3×3 matrix whose nullity is 2 . For each statement i-iii, supply a proof of the statement or exhibit a counterexample: (i) The characteristic polynomial of B is divisible by t^{2}; (ii) The trace of B is an eigenvalue of B; (iii) The matrix B is diagonalizable.
