Math 110 Midterm Exam

Please put away all books, calculators, electronic games, cell phones, pagers, .mp3 players, PDAs, and other electronic devices. You may refer to a single 2-sided sheet of notes. Please write your name on each sheet of paper that you turn in; don't trust staples to keep your papers together. Explain your answers in full English sentences as is customary and appropriate. Your paper is your ambassador when it is graded.

1. Let V be a vector space over a field F and let v be a vector in V. Let $T: V \to V$ be a linear transformation. Suppose that $T^m(v) = 0$ for some positive integer m but that $T^{m-1}(v)$ is non-zero. Show that the span of $\{v, T(v), \ldots, T^{m-1}(v)\}$ has dimension m.

We have to show that the vectors $v, T(v), \ldots, T^{m-1}(v)$ are linearly independent. Assume the contrary, i.e., that some non-trivial linear combination of these vectors vanishes. Take a linear combination with the fewest possible terms and write it in the form $0 = \sum_{i=0}^{r} a_i T^i(v)$ with $r \leq m-1$. We must have $a_r \neq 0$ because otherwise we could re-write the sum with fewer terms. Also, some a_i with i < r must be non-zero because otherwise the whole sum would consist of one term and we'd end up with $T^r(v) = 0$, which is contrary to assumption. We apply T^{m-r} to the linear combination and obtain $0 = \sum_{i=0}^{r} a_i T^{i+m-r}(v) = \sum_{i=0}^{r-1} a_i T^{i+m-r}(v)$, with the latter equality coming from the assumption $T^m(v) = 0$. We thus have a vanishing linear combination with fewer terms than the "minimal" one that we started with; this is a contradiction.

2. Let $T: V \to V$ be a linear map on a non-zero finite-dimensional vector space V over a field F. Suppose that the characteristic polynomial of T splits over F into a product of linear factors. Show that there is a basis B of V such that $[T]_B$ is upper-triangular.

We prove the statement by induction on the dimension of V; it is trivial if $\dim V = 1$. The characteristic polynomial of T has a root, and thus T has an eigenvector v_1 . The vectors that are multiples of v_1 form a 1-dimensional subspace W of V that is invariant under T (in the sense that $T(W) \subseteq W$). As we saw in the homework that was due on October 17, T induces a linear map

 $U: V/W \to V/W$ whose characteristic polynomial divides that of T. By the induction hypothesis, there is a basis $\overline{v}_2, \ldots, \overline{v}_n$ of V/W in which the matrix of U is upper-triangular. Here, we understand that we are choosing vectors v_2, \ldots, v_n of V and that the \overline{v}_i are their images $v_i + W$ in V/W. The vectors v_1, v_2, \ldots, v_n form a basis of V in which T is upper-triangular.

3. Let V be an n-dimensional real or complex inner product space. Let e_1, \ldots, e_n be an orthonormal basis of V. Suppose that $T: V \to V$ is a linear transformation and let $T^*: V \to V$ be the adjoint of T. Show that $\sum_{j=1}^n ||T^*(e_j)||^2 = \sum_{j=1}^n ||T(e_j)||^2$. If $||T^*v|| \le ||Tv||$ for all $v \in V$, show that $||T^*v|| = ||Tv||$ for all $v \in V$.

For the first part, we just compute. Say $T(e_j) = \sum_i a_{ij} e_i$ for each *i*. Then

 $||T(e_j)||^2 = \sum_i |a_{ij}|^2$, so that $\sum_{j=1}^n ||T(e_j)||^2 = \sum_{i,j=1}^n |a_{ij}|^2$. The analogues of the

 a_{ij} for T^* are the \overline{a}_{ji} , but interchanging *i* and *j* and applying a complex conjugation does not change the double sum that we have just computed. Hence we indeed have $\sum_{j=1}^{n} ||T^*(e_j)||^2 = \sum_{j=1}^{n} ||T(e_j)||^2$. For the second part, we suppose that $||T^*v|| < ||Tv||$ for some $v \in V$. This vector must be non-zero; we can assume that it has norm 1 by dividing it by its norm. (This preserves the inequality that we started with.) Complete the singleton set $\{v\}$ to a basis $v = v_1, v_2, \ldots, v_n$ of V and apply the Gram-Schmidt process to this basis to obtain an orthogonal basis of V. Divide the resulting vectors by their norms to obtain an orthonormal basis e_1, \ldots, e_n of V. The first element of this basis, e_1 , is v. We now look at

 $\sum_{j=1}^{n} \|T^{*}(e_{j})\|^{2} = \sum_{j=1}^{n} \|T(e_{j})\|^{2}, \text{ comparing terms. For each } j, \text{ the } j\text{ th term on the}$

left-hand side is less than or equal to the *j*th term on the right-hand side. On the other hand, the first term on the left is strictly less than the first term on the right. This is a contradiction: the sums cannot turn out to be equal. Our hypothesis $||T^*v|| < ||Tv||$ was therefore incorrect, so we are forced to conclude that $||T^*v|| = ||Tv||$ for all v.