Please put away all books, calculators, electronic games, cell phones, pagers, .mp3 players, PDAs, and other electronic devices. You may refer to a single 2-sided sheet of notes. Please write your name on each sheet of paper that you turn in; don't trust staples to keep your papers together. Explain your answers in full English sentences as is customary and appropriate. Your paper is your ambassador when it is graded.

1. Let V be a vector space over a field F and let v be a vector in V. Let $T: V \rightarrow$ V be a linear transformation. Suppose that $T^{m}(v)=0$ for some positive integer m but that $T^{m-1}(v)$ is non-zero. Show that the span of $\left\{v, T(v), \ldots, T^{m-1}(v)\right\}$ has dimension m.

We have to show that the vectors $v, T(v), \ldots, T^{m-1}(v)$ are linearly independent. Assume the contrary, i.e., that some non-trivial linear combination of these vectors vanishes. Take a linear combination with the fewest possible terms and write it in the form $0=\sum_{i=0}^{r} a_{i} T^{i}(v)$ with $r \leq m-1$. We must have $a_{r} \neq 0$ because otherwise we could re-write the sum with fewer terms. Also, some a_{i} with $i<r$ must be non-zero because otherwise the whole sum would consist of one term and we'd end up with $T^{r}(v)=0$, which is contrary to assumption. We apply T^{m-r} to the linear combination and obtain $0=\sum_{i=0}^{r} a_{i} T^{i+m-r}(v)=\sum_{i=0}^{r-1} a_{i} T^{i+m-r}(v)$, with the latter equality coming from the assumption $T^{m}(v)=0$. We thus have a vanishing linear combination with fewer terms than the "minimal" one that we started with; this is a contradiction.
2. Let $T: V \rightarrow V$ be a linear map on a non-zero finite-dimensional vector space V over a field F. Suppose that the characteristic polynomial of T splits over F into a product of linear factors. Show that there is a basis B of V such that $[T]_{\mathrm{B}}$ is upper-triangular.

We prove the statement by induction on the dimension of V; it is trivial if $\operatorname{dim} V=1$. The characteristic polynomial of T has a root, and thus T has an eigenvector v_{1}. The vectors that are multiples of v_{1} form a 1 -dimensional subspace W of V that is invariant under T (in the sense that $T(W) \subseteq W$). As we saw in the homework that was due on October 17, T induces a linear map
$U: V / W \rightarrow V / W$ whose characteristic polynomial divides that of T. By the induction hypothesis, there is a basis $\bar{v}_{2}, \ldots, \bar{v}_{n}$ of V / W in which the matrix of U is upper-triangular. Here, we understand that we are choosing vectors v_{2}, \ldots, v_{n} of V and that the \bar{v}_{i} are their images $v_{i}+W$ in V / W. The vectors $v_{1}, v_{2}, \ldots, v_{n}$ form a basis of V in which T is upper-triangular.
3. Let V be an n-dimensional real or complex inner product space. Let e_{1}, \ldots, e_{n} be an orthonormal basis of V. Suppose that $T: V \rightarrow V$ is a linear transformation and let $T^{*}: V \rightarrow V$ be the adjoint of T. Show that $\sum_{j=1}^{n}\left\|T^{*}\left(e_{j}\right)\right\|^{2}=\sum_{j=1}^{n}\left\|T\left(e_{j}\right)\right\|^{2}$. If $\left\|T^{*} v\right\| \leq\|T v\|$ for all $v \in V$, show that $\left\|T^{*} v\right\|=\|T v\|$ for all $v \in V$.

For the first part, we just compute. Say $T\left(e_{j}\right)=\sum_{i} a_{i j} e_{i}$ for each i. Then $\left\|T\left(e_{j}\right)\right\|^{2}=\sum_{i}\left|a_{i j}\right|^{2}$, so that $\sum_{j=1}^{n}\left\|T\left(e_{j}\right)\right\|^{2}=\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}$. The analogues of the $a_{i j}$ for T^{*} are the $\bar{a}_{j i}$, but interchanging i and j and applying a complex conjugation does not change the double sum that we have just computed. Hence we indeed have $\sum_{j=1}^{n}\left\|T^{*}\left(e_{j}\right)\right\|^{2}=\sum_{j=1}^{n}\left\|T\left(e_{j}\right)\right\|^{2}$. For the second part, we suppose that $\left\|T^{*} v\right\|<\|T v\|$ for some $v \in V$. This vector must be non-zero; we can assume that it has norm 1 by dividing it by its norm. (This preserves the inequality that we started with.) Complete the singleton set $\{v\}$ to a basis $v=v_{1}, v_{2}, \ldots, v_{n}$ of V and apply the Gram-Schmidt process to this basis to obtain an orthogonal basis of V. Divide the resulting vectors by their norms to obtain an orthonormal basis e_{1}, \ldots, e_{n} of V. The first element of this basis, e_{1}, is v. We now look at $\sum_{j=1}^{n}\left\|T^{*}\left(e_{j}\right)\right\|^{2}=\sum_{j=1}^{n}\left\|T\left(e_{j}\right)\right\|^{2}$, comparing terms. For each j, the j th term on the left-hand side is less than or equal to the j th term on the right-hand side. On the other hand, the first term on the left is strictly less than the first term on the right. This is a contradiction: the sums cannot turn out to be equal. Our hypothesis $\left\|T^{*} v\right\|<\|T v\|$ was therefore incorrect, so we are forced to conclude that $\left\|T^{*} v\right\|=\|T v\|$ for all v.

