Homework assignment \#5, due September 26

- $\S 2.3$, problem 13 and $\S 2.6$, problem 10.
- Suppose that A is an $n \times m$ matrix and B is an $m \times n$ matrix, so that the products $A B$ and $B A$ are both defined. (They are square matrices of size n and m, respectively.) Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$, thus generalizing the first assertion of the problem.
- Suppose that the F-vector spaces F^{n} and F^{m} are isomorphic. Using theorems that we have proved in class, explain briefly why n equals m. Now consider the following alternative argument:

To give an isomorphism from F^{n} to F^{m} is to give linear maps $T: F^{n} \rightarrow F^{m}$ and $U: F^{m} \rightarrow F^{n}$ so that the two composites $T \circ U$ and $U \circ T$ are the identity maps of F^{m} and F^{n}. Equivalently, we have to find matrices A and B of dimensions $n \times m$ and $m \times n$ so that $A B$ and $B A$ are the identity matrices of sizes n and m. The trace of $A B$ is n, while the trace of $B A$ is m; thus $n=m$.

Can we use this argument to show that the dimension of a vector space is well defined, or is it better to stick with the proof given in the book (replacement theorem and some easy further argument)?

- §2.4, problems 9, 20, 24
- Let X be a subspace of a finite-dimensional F-vector space V. Let V^{*} be the dual space of V and define X^{\perp} to be the subspace of V^{*} consisting of those linear forms $\varphi: V \rightarrow F$ that vanish identically on X.
Recall the "canonical" map $\pi: V \rightarrow V / X$ that maps $v \in V$ to $v+X$. We obtain the linear map $\pi^{t}:(V / X)^{*} \rightarrow V^{*}$ by composing with π; a linear form $\varphi: V / X \rightarrow F$ maps to the linear form $\varphi \circ \pi: V \rightarrow F$. Show that π^{t} is injective and that its image is X^{\perp}. Thus X^{\perp} may be viewed as the dual of V / X.
- $\S 2.6$, problems 10 and 11

