1. Exhibit a list of matrices over \mathbf{R} that is as long as possible and so that the list has the following properties: (1) The characteristic polynomial of each matrix on the list is $(t-1)^{5}(t+1) ;(2)$ the minimal polynomial of each matrix is $(t-1)^{2}(t+1) ;(3)$ no two matrices on the list are similar to each other.
2. Suppose that M is a real 3×3 matrix such that M^{3} is the identity matrix but M is not the identity matrix. Find the characteristic polynomial of M. Give an explicit example of an M satisfying the condition.
3. Determine the Jordan canonical form of the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4\end{array}\right)$.
4. Suppose that A is a real $n \times n$ matrix. Is it true that A must commute with its transpose? Suppose that the columns of A form an orthonormal set; is it true that the rows of A must also form an orthonormal set?
5. Suppose that A is an $n \times n$ matrix of real numbers. Let r be the rank of A. Let r^{\prime} be the rank of the same matrix, considered as a matrix of complex numbers. Find a formula relating r^{\prime} to r.
6. Let A be an $n \times n$ matrix of real numbers such that the sum of each column of A is the number 1. Show that there is a non-zero column vector x such that $A x=x$.
7. Let T be a linear transformation on a finite-dimensional complex vector space V. We say that T is completely reducible if the following property holds: for each subspace W of V that is T-invariant (in the sense that $T(W) \subseteq W$), there is a T-invariant subspace W^{\prime} of V so that $V=W \oplus W^{\prime}$. Prove that T is completely reducible if and only if V has a basis of eigenvectors for T.
8. Let \langle,$\rangle be an inner product on a finite-dimensional complex vector space V$. Let $T: V \rightarrow V$ be a linear transformation. Suppose that $\langle T(x), T(y)\rangle=0$ for all $x, y \in V$ such that $\langle x, y\rangle=0$. Prove that there is a unitary operator $S: V \rightarrow V$ and a complex number c so that $T=c S$.
9. Let A be a real $n \times n$ matrix such that $\operatorname{det} A$ is non-zero. Show that there is a polynomial $f(t)$ with real coefficients and degree $<n$ such that $A^{-1}=f(A)$.
10. Let A and B be $n \times n$ matrices over a field F. Suppose that $A^{2}=A$ and $B^{2}=B$. Prove that A and B are similar if and only if they have the same rank.
11. Let $T: V \rightarrow V$ be a linear transformation on a finite-dimensional vector space. Let $n=\operatorname{dim} V$ and assume that $n \geq 2$. Suppose that $T^{n}=0$ but that T^{n-1} is non-zero. Show that there is no linear transformation $U: V \rightarrow V$ such that $U^{2}=T$.
12. Let V be the 9 -dimensional real vector space $M_{3 \times 3}(\mathbf{R})$. For each $A \in M_{3 \times 3}(\mathbf{R})$, let $T_{A}: V \rightarrow V$ be the left-multiplication map $B \mapsto A B$. Suppose that A has determinant 32 and minimal polynomial $(t-4)(t-2)$. Find the trace of T_{A}.

These come from http://math.berkeley.edu/\~desouza/pb.html

