Suppose that $p=0$ in F. Then we'd like to find $p \times p$ matrices A and B such that $A B-B A=I$, where I is the identity matrix of size p. Equivalently, we'd like to exhibit a p-dimensional vector space V together with linear maps T and U from V to V such that $U T-T U=I$, where I now is the identity map of V.

Here is an intrinsic version of the solution that was proposed today in class by Boris (in the front row). Let F be a field in which p is 0 and let $W=F[x]$ be the space of all polynomials (of all degrees) over F in the variable x. Then $x^{p} W$ is the subspace of polynomials that have no terms of degree $<p$. Let $V=W / x^{p} W$. Then V is basically the space of polynomials of degree $<p$, except that we agree to view polynomials of arbitrary degree as elements of V by tossing away all terms involving x^{p}, x^{p+1}, and so on.

Let $T: V \rightarrow V$ be the linear map "multiplication by x." Then $T(1)=x, T(x)=x^{2}$, and so on; note that $T\left(x^{p-1}\right)=x^{p}=0$. Let U be the map "differentiation with respect to x." This map is really well defined on V because the derivative of any polynomial in $x^{p} W$ is again in $x^{p} W$.

Consider $U T-T U$. This takes 1 to the derivative of x, which is 1 . It takes x to $2 x-x=x$. It takes x^{2} to $3 x^{2}-2 x^{2}=x^{2}$. And so on. At the end of the string of basis vectors, it takes x^{p-1} to $0-(p-1) x^{p-1}=x^{p-1}$. Hence $U T-T U$ is the identity map on V.

