Derivatives: definition and first properties

Math 10A

September 5, 2017

Extra Office Hour

Today, 11AM-noon, 885 Evans. Lunch to follow if you want.

DSP

If you're a DSP student and need exam accommodations, please contact me if you haven't done that already.

What is a derivative?

If a function f is defined on some interval and a is inside the interval, we define the derivative of $f(x)$ at $x=a$.
This number, denoted $f^{\prime}(a)$, is the slope of the line that kisses the curve $y=f(x)$ at the point $(a, f(a))$.

The derivative of e^{x} at $x=0$ is 1 .
Experts say that the line is tangent to the curve and don't say much about kissing.

The tangent line is determined by its slope (and the fact that it passes through ($a, f(a)$). The slope is a limit of the slopes of secant lines connecting $(a, f(a))$ to $(b, f(b))$, where b is near a and approaches a.

The tangent line is determined by its slope (and the fact that it passes through ($a, f(a)$). The slope is a limit of the slopes of secant lines connecting $(a, f(a))$ to $(b, f(b))$, where b is near a and approaches a.

$$
\begin{gathered}
f^{\prime}(a)=\lim _{b \rightarrow a} \frac{f(b)-f(a)}{b-a} \\
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{gathered}
$$

A first example, involving sin

The derivative of $\sin x$ at $x=0$:

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}
$$

This limit is 1 , as we saw last week; we can write $\sin ^{\prime} 0=1$.

We'll look at more examples to get a feel for what happens. Take $f(x)=x^{2}$ and $a=3:$

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{b \rightarrow 3} \frac{b^{2}-3^{2}}{b-3} \\
& =\lim _{b \rightarrow 3}(b+3)=3+3=6
\end{aligned}
$$

If a were 17 instead of 3 , we'd end up with

$$
f^{\prime}(17)=17+17=34 .
$$

In general, $f^{\prime}(a)=2 a$.

We'll look at more examples to get a feel for what happens. Take $f(x)=x^{2}$ and $a=3:$

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{b \rightarrow 3} \frac{b^{2}-3^{2}}{b-3} \\
& =\lim _{b \rightarrow 3}(b+3)=3+3=6
\end{aligned}
$$

If a were 17 instead of 3 , we'd end up with

$$
f^{\prime}(17)=17+17=34
$$

In general, $f^{\prime}(a)=2 a$.

This example is fairly typical: to compute the limit of a fraction, you can often simplify the fraction and then figure out the limit.

We'll do a few more examples in this direction and then empower you to use the general rule for power functions-functions of the form $y=x^{n}$, where the exponent n is pretty much any real number.

For example, $y=\sqrt{x}$. If $f(x)=\sqrt{x}$, then:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{b \rightarrow a} \frac{\sqrt{b}-\sqrt{a}}{b-a} \\
& =\lim _{b \rightarrow a} \frac{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}{(b-a)(\sqrt{b}+\sqrt{a})} \\
& =\lim _{b \rightarrow a} \frac{1}{\sqrt{b}+\sqrt{a}}=\frac{1}{2 \sqrt{a}} \\
& =\frac{1}{2} a^{-1 / 2} .
\end{aligned}
$$

"The derivative of $x^{1 / 2}$ is $\frac{1}{2} x^{-1 / 2}$."

What is the derivative of $y=\sqrt{x}$ at $x=4$?

The derivative is $\frac{1}{2} \cdot \frac{1}{\sqrt{4}}=1 / 4$, although the aspect ratio makes the derivate look like 1 in the picture. \#fakenews

The derivative of $y=x^{m}$ at $x=a$ is \qquad ?
Try $m=-1 / 2, y=\frac{1}{\sqrt{x}}$:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{b \rightarrow a} \frac{\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{a}}}{b-a} \\
& =\lim _{b \rightarrow a} \frac{\sqrt{a}-\sqrt{b}}{\sqrt{a} \sqrt{b}(b-a)} \\
& =-\lim _{b \rightarrow a} \frac{1}{\sqrt{a} \sqrt{b}} \cdot \frac{\sqrt{b}-\sqrt{a}}{b-a} \\
= & \frac{-1}{a} \cdot \frac{1}{2} a^{-1 / 2}=-\frac{1}{2} a^{-3 / 2}
\end{aligned}
$$

We're assuming, of course, that a and b are positive in this discussion.

The rule

If $f(x)=x^{m}$, then

$$
f^{\prime}(a)=m a^{m-1}
$$

"You multiply by the exponent and decrease the exponent by $1 . "$

If $m<1$, you need to assume that a is non-zero.
If $m=1$, the derivative is 1 for all a, so the symbolic expression a^{0} should be interpreted as 1 .

Sums and multiples

- The derivative of a sum of two functions is the sum of the derivatives of the two functions.
- The derivative of 37 times a function is 37 times the derivative of the function. (The number 37 was chosen just for illustration.)

The derivative of $x^{3}-3 x^{2}+10 x+1$ at $x=a$ is

$$
3 a^{2}-6 a+10+0
$$

"The derivative of $x^{3}-3 x^{2}+10 x+1$ is $3 x^{2}-6 x+10$."

Exponentials

The derivative of $f(x)=e^{x}$ at $x=a$ is

$$
\lim _{h \rightarrow 0} \frac{e^{a+h}-e^{a}}{h}=e^{a} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{a} f^{\prime}(0)
$$

The number $f^{\prime}(0)$ in this case is equal to 1 .
[We used the formula $e^{a+h}=e^{a} e^{h}$ in the displayed formula above.]

Why is it true that the number $f^{\prime}(0)$ in this case is equal to 1 ?

This beautiful picture was on the first slide after the title page!
Schreiber, page 204: "Although it is beyond the scope of this book, it turns out. ..." Sheesh!

Alternative Facts

It's a much better idea to define e so that e^{x} has derivative 1 at $x=0$. Let's pretend that Schreiber did that.

Then the natural log function In would have derivative 1 at $x=1$. (I'll explain this on the board.)
Can we now compute $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ and see that it's e ?

Take In of the limit, which is

$$
\lim _{n \rightarrow \infty} n \cdot \ln \left(1+\frac{1}{n}\right)
$$

and hope that we get 1 (the natural \log of e). This limit is

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{1 / n} & =\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h}
\end{aligned}
$$

This last limit is by definition the derivative of In at 1, which we'd know to be 1 .

Booksellers

Josh Adams, who wrote to me on August 29
Avani Kelekar who wrote on September 2

