
Techniques of Integration: II

Math 10A

October 12, 2017

Math 10A Techniques of Integration: II



By Parts

We’ve calculated a few integrals by using the formula∫
u dv = uv −

∫
v du.

Summary: we write the integrand in an antiderivative problem
as the product f (x)g(x) where we can figure out an
antiderivative G(x) of the factor g(x). We put u = f (x),
v = G(x), dv = g(x) dx . Then∫

f (x)g(x) dx = f (x)G(x) −
∫

f ′(x)G(x) dx .

By expressing
∫

f (x)g(x) dx in terms of
∫

f ′(x)G(x) dx , we

can replace f by its derivative and g by an antiderivative G of g.
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We will look at a few more examples before moving on to
numerical integration.

We already saw when discussing such integrals as
∫

x2e−x dx

and
∫

x2e−x dx that repeated applications of integration by

parts can pay off. Next is another problem with this feature.
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Find
∫

ex sin x dx .

The integrand is a product, so we can try setting u = ex ,
dv = sin x dx , v = − cos x . We get∫

ex sin x dx = −ex cos x +

∫
ex cos x dx .

The right-hand integral is a sibling of the initial integral, with sin
replaced by cos. Have we made any progress?
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In
∫

ex cos x dx , put u = ex , dv = cos x dx , v = sin x . Then

∫
ex cos x dx = ex sin x −

∫
sin x ex dx .

Then ∫
ex sin x dx = −ex cos x +

∫
ex cos x dx

= −ex cos x + ex sin x −
∫

sin x ex dx

This gives

2
∫

ex sin x dx = −ex cos x + ex sin x ,

∫
ex sin x dx =

−ex cos x + ex sin x
2

.
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An example gotten by googling: Find
∫

x5
√

x3 + 1 dx .

Yuck!

For lack of a better idea, we can try to put dv = x2
√

x3 + 1 dx .
This sounds promising because we can integrate x2

√
x3 + 1:

an antiderivative is
2
9

(x3 + 1)
3
2 . (See doc camera.)

We need to take u = x3; then∫
x5

√
x3 + 1 dx =

2
9

x3(x3 + 1)
3
2 −

∫
2
9

(x3 + 1)
3
2 3x2 dx .
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This is good because∫
(x3 + 1)

3
2 3x2 dx =

2
5

(x3 + 1)
5
2 + C.

Putting everything together gives us∫
x5

√
x3 + 1 dx =

2
9

x3(x3 + 1)
3
2 −

∫
2
9

(x3 + 1)
3
2 3x2 dx

=
2
9

x3(x3 + 1)
3
2 − 2

9
· 2

5
(x3 + 1)

5
2 + C.

This was Example 7 in Paul’s tutorial.
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Numerical integration

Our aim is to find a numerical approximation to a definite

integral like
∫ 1

1/2
2xe−x2

dx . The definite integral in question

represents the area under the curve y = 2xe−x2
:
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We will introduce a number of approximation methods and use
them to compute approximate values of the integral∫ 1

1/2
2xe−x2

dx . I picked this particular integral because we

happen to know an antiderivative of 2xe−x2
, namely −e−x2

.
Hence it is possible to compute the area exactly as
e−1/4 − e−1; numerically, this quantity works out to be
≈ 0.410921341899963.
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Since we know the area exactly in this example, why do we
want to approximate it? We are introducing methods that can
be used for other integrals that can’t be calculated exactly:

1 We might want to calculate areas like
∫ 1

1/2
e−x2

dx , for

which we don’t know an antiderivative.
2 We might be scientists and have access only to data

associated with an unknown function—we’d never know an
explicit function.
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Riemann sums

We can use Riemann sums with left or right endpoints to
approximate the definite integral as a sum of areas of
rectangles. Note that, in the picture, I’ve taken the interval
[1/2,1] and divided it up into five equal segments of length 0.1.
With left endpoints we get the approximation

0.1 × [(f (0.5) + f (0.6) + · · · + f (0.9)] ≈ 0.4118

for the integral; I’ve put f (x) = 2xe−x2
for convenience.
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The approximate value 0.4118 compares well with the actual
value 0.41092 · · · because two of the approximating rectangles
under-estimate the area while the three others give
over-estimates.
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We are slightly lucking out.
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In this example, we could use right endpoints instead of left
endpoints. The approximation to the area that we obtain is
0.4075 . . .; again, the actual value is 0.41092 . . ..
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This time we have two over-estimates and three
under-estimates.
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Trapezoidal rule

The trapezoidal rule amounts to approximating thin strips of
area under the curve by areas of trapezoids running between
the left and right endpoints of each strip. The resulting
trapezoidal approximation is just the average of the left- and
right-endpoint approximations.
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Here’s the diagram again, slightly blown up. The tops of the
trapezoids have been colored gold; otherwise, we’d never be
able to pick them out. The trapezoidal approximation looks
really good, doesn’t it?
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Numerically, we get 0.409658 . . ..
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Before discussing theoretical estimates for the accuracy of the
approximation methods we’ve encountered so far, I’ll draw a
picture that illustrates the midpoint rule. For this rule, you use
middle points instead of left or right endpoints.
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The approximation here is 0.4115533986 . . . .
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Numerical summary, so far

Actual value 0.410921341899963.

Rule Left Right Midpoint Trap

Estimate 0.4118 0.4075 0.41155 0.40966

Abs. Error 0.0008888 0.0034 0.000632 0.00126

In this particular case, the midpoint rule came out the winner. I
would have bet on the trapezoids. I think that the midpoint rule,
in general, is kind of a turkey.
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Here’s the reason for my bet: the left, right and midpoint rules
approximate the function by a constant over each small interval.
The trapezoidal rule approximates the function by a line
(“y = mx + b”) over each little interval. As we saw from the
picture, the tops of the trapezoids hug the function very well.
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Simpson’s rule

Simpson’s rule approximates the function by parabolas—and
thus does even better.

For a parabola, you need three points (just as a line is
determined by two points), so the picture looks different.

Before showing you the picture, I want to recommend a visit to
the Wikipedia page for Simpson’s rule (linked above). That
page gives you the explicit formula for a quadratic
Ax2 + Bx + C that passes through three specified points on the
plane (with all different x-coordinates).
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For simplicity, I’ve divided the interval from 0.5 to 1 into only two
segments, each of length 0.25. The gold parabola passes
through the three relevant points of y = f (x). Note the tight fit!
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The area under the parabola is the product of two numbers: the
length of the full interval for which we’re approximating the area
(0.5 in this case) and a weighted average of the three values of
the function. The weights are 1, 4, 1, so the weighted average
in this case is

1
6

(f (0.5) + 4f (0.75) + f (1.0)) ≈ 0.8222.

The area estimate is then

0.5 × 0.822 . . . ≈ 0.411104717816652.

The difference between this number and the true value is
0.000183 . . .. If I’m not mistaken, the Simpson estimate is the
best so far. And we’ve used only three points!
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The general formula

Simpson’s rule works when the number of slivers is even. (For
us, it was 2.) Suppose the number of slivers is n, and let

∆x =
b − a

n
, as usual. Then the area is estimated by:

∆x
3

[f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + · · · + 4f (xn−1) + f (xn)].

The numbers x0,. . . , xn are the equally spaced endpoints of the
small segments. Each number x1, . . . , xn−1 is the end of one
segment and the beginning of the next. The weights “2” in the
formula come about as 1 + 1: f (x2), for example, occurs for the
first of the n/2 parabolas, but also for the second.
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When n = 2, the general formula specializes to

∆x
3

[f (a) + 4f (
a + b

2
) + f (b)].

The quantity
∆x
3

may be rewritten
b − a

6
, which explains the “6”

as our previous denominator.
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