Techniques of Integration: I

Math 10A

October 10, 2017

Math 10A Techniques of Integration: I

We had the tenth Math 10A breakfast yesterday morning:

If you'd like to propose a future event (breakfast, lunch, dinner), please let me know.

To evaluate $\int f(x) dx$ (an antiderivative) or $\int_{a}^{b} f(x) dx$ (a number), we might try:

- Substitution = change of variables; we did some on Thursday;
- Integration by parts—the magic elixir;
- Numerical integration (for definite integrals);
- Integration via partial fractions (just a bit).

We will learn about these techniques this week—mostly through examples.

On Thursday, we looked at

$$\int \cos(x^2) x \, dx.$$

Today: $\int e^{\cos x} \sin x \, dx.$ We set $u = \cos x$, $\frac{du}{dx} = -\sin x$, $du = -\sin x \, dx.$ The integral becomes

$$-\int e^u\,du=-e^u+C=-e^{\cos x}+C.$$

Today:

$$\int e^{\cos x} \sin x \, dx.$$

We set
$$u = \cos x$$
, $\frac{du}{dx} = -\sin x$, $du = -\sin x \, dx$.

The integral becomes

$$-\int e^{u}\,du=-e^{u}+C=-e^{\cos x}+C.$$

Find

$$\int_0^{\pi/2} e^{\cos x} \sin x \, dx.$$

We now know enough to write down the answer as

$$-e^{\cos x}\Big]_{0}^{\pi/2} = -e^{\cos(\pi/2)} + e^{\cos 0} = -e^{0} + e^{1} = e - 1.$$

Find

$$\int_0^{\pi/2} e^{\cos x} \sin x \, dx.$$

We now know enough to write down the answer as

$$-e^{\cos x}\Big]_{0}^{\pi/2} = -e^{\cos(\pi/2)} + e^{\cos 0} = -e^{0} + e^{1} = e - 1.$$

Find

$$\int_0^{\pi/2} e^{\cos x} \sin x \, dx.$$

Set $u = \cos x$ and $du = -\sin x \, dx$ as before. Now say:

"As x ranges from 0 to $\pi/2$, cos x ranges from 1 to 0." Accordingly:

$$\int_0^{\pi/2} e^{\cos x} \sin x \, dx = -\int_1^0 e^u \, du = -e^u \bigg]_1^0 = e - 1.$$

At the end of the previous slide, we allowed ourselves to write \int_{1}^{0} even though 1 < 0.

Formally,
$$\int_{b}^{a} f(x) dx$$
 is defined to be $-\int_{a}^{b} f(x) dx$ for $a \leq b$.

The point of the previous example is that you never have to undo the substitution (i.e., go back from u to x) when computing a definite integral. Just write the limits of integration in terms of the new variable. At the end of the previous slide, we allowed ourselves to write \int_{1}^{0} even though 1 < 0.

Formally,
$$\int_{b}^{a} f(x) dx$$
 is defined to be $-\int_{a}^{b} f(x) dx$ for $a \leq b$.

The point of the previous example is that you never have to undo the substitution (i.e., go back from u to x) when computing a definite integral. Just write the limits of integration in terms of the new variable. Recall this computation from the Time of Implicit Differentiation:

If $x = \tan y$, then

$$1 = (\sec^2 y)\frac{dy}{dx} = (1 + \tan^2 y)\frac{dy}{dx} = (1 + x^2)\frac{dy}{dx}$$

and thus

$$\frac{dy}{dx} = \frac{1}{1+x^2}, \quad \frac{d(\tan^{-1}x)}{dx} = \frac{1}{1+x^2}.$$

I've written " tan^{-1} " for the inverse tangent, also called arctan.

Find an antiderivative of the function $\frac{1}{1+x^2}$.

In view of what we just did, we could come up with the answer $\tan^{-1} x$.

This is a bit unsatisfactory because we answered the question only be remembering a computation that we just did.

Find an antiderivative of the function $\frac{1}{1+x^2}$.

In view of what we just did, we could come up with the answer $\tan^{-1} x$.

This is a bit unsatisfactory because we answered the question only be remembering a computation that we just did. The classic approach to computing $\int \frac{1}{1+x^2} dx$ is to introduce a "trigonometric substitution" out of the blue:

Let
$$x = \tan u$$
, $\frac{dx}{du} = \sec^2 u$, $dx = \sec^2 u \, du$. Then

$$\int \frac{1}{1+x^2} \, dx = \int \frac{1}{1+\tan^2 u} \sec^2 u \, du = \int 1 \, du = u + C.$$

We finish by saying that $u = \tan^{-1} x$, so the answer is $\tan^{-1} x + C$.

Find
$$\int_0^\infty \frac{1}{1+x^2} dx$$
.
By definition, this is $\lim_{b\to\infty} \int_0^b \frac{1}{1+x^2} dx$.
We computed the indefinite integral: $\tan^{-1} x$. Since $\tan^{-1}(0) = 0$, $\frac{1}{1+x^2} dx = \tan^{-1} b$ and $\int_0^\infty \frac{1}{1+x^2} dx = \lim_{b\to\infty} \tan^{-1} b = \frac{\pi}{2}$.

The area under the entire graph of $y = \frac{1}{1 + x^2}$ is $2 \cdot \frac{\pi}{2} = \pi$ by symmetry.

BREAK

Math 10A Techniques of Integration: I

By Parts

The technique of *integration by parts* attempts to reverse-engineer the product formula

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx},$$

where u and v are functions of x. Symbolically,

$$d(uv) = udv + vdu, \quad \int d(uv) = \int u \, dv + \int v \, du.$$

In other words,

$$uv = \int u \, dv + \int v \, du, \quad \int u \, dv = uv - \int v \, du.$$

We are not bothering to write "+C" in these formulas because indefinite integrals include a tacit +C in their values.

$$\int u\,dv=uv-\int v\,du,$$

when *u* and *v* are functions of *x*. When we are confronted with an integral, it's up to us to decide how to use the formula: we introduce *u* and *v* so that $\int u \, dv$ is the integral we are handed and so that $\int v \, du$ seems to be more appealing.

We need an example—or maybe a joke.

$$\int u\,dv=uv-\int v\,du,$$

when *u* and *v* are functions of *x*. When we are confronted with an integral, it's up to us to decide how to use the formula: we introduce *u* and *v* so that $\int u \, dv$ is the integral we are handed and so that $\int v \, du$ seems to be more appealing. We need an example—or maybe a joke. Suppose someone wants an antiderivative of $x \sin x$:

$$\int x \sin x \, dx = ??$$

We introduce u = x and write tentatively $dv = \sin x \, dx$ in order to see whether we can find a v so that $dv = \sin x \, dx$. This equation amounts to

$$\frac{dv}{dx} = \sin x \Longrightarrow v = -\cos x.$$

We could have taken $v = -\cos x + 31$ but the choice of v is ours, so we pick the simple $v = -\cos x$.

Now

$$\int x \sin x \, dx = \int u \, dv \text{ with } u = x, v = -\cos x.$$

The formula

$$\int u\,dv = uv - \int v\,du$$

becomes

$$\int x \sin x \, dx = -x \cos x + \int \cos x \, dx.$$

The right-hand side is

$$-x\cos x + \sin x + C$$
,

so we have learned that

$$\int x \sin x \, dx = -x \cos x + \sin x + C.$$

As a check, let's compute the derivative of $-x \cos x + \sin x$:

$$[-x \cdot (-\sin x) - 1 \cdot \cos x] + \cos x = x \sin x,$$

as we hoped.

Compute
$$\int_0^\infty x e^{-x} dx$$
.

Do it first without the factor *x*:

$$\int_0^\infty e^{-x} \, dx = \lim_{b \to \infty} -e^{-x} \Big]_0^b = \lim_{b \to \infty} (1 - e^{-b}) = 1.$$

Next, think about $\int xe^{-x} dx$ in terms of integration by parts. Again we take u = x, and this time we take $v = -e^{-x}$ to get $dv = e^{-x} du$.

The formula
$$\int u \, dv = uv - \int v \, du$$
 gives
$$\int x e^{-x} \, dx = -x e^{-x} + \int e^{-x} \, dx,$$

$$\int_0^b x e^{-x} dx = -x e^{-x} \bigg]_0^b + \int_0^b e^{-x} dx = (0 - b e^{-b}) + \int_0^b e^{-x} dx.$$

Hence

$$\int_0^\infty x e^{-x} \, dx = \int_0^\infty e^{-x} \, dx - \lim_{b \to \infty} b e^{-b} = 1 - 0 = 1.$$

The value $\lim_{b\to\infty} b/e^b = 0$ comes from l'Hôpital's Rule.

In this computation, we can streamline things as follows:

 we can carry the limits of integration along as we compute instead of doing the indefinite integral first;

• we can be real pros and symbolically take $b = \infty$ all along. Confronted with $\int_0^\infty x e^{-x} dx$, we take u = x, $v = -e^{-x}$ as before and write directly

$$\int_0^\infty x e^{-x} \, dx = -x e^{-x} \bigg]_0^\infty + \int_0^\infty e^{-x} \, dx = (0-0) + 1 = 1.$$

Maybe this is just packaging.