Techniques of Integration: I

Math 10A

October 10, 2017

We had the tenth Math 10A breakfast yesterday morning:

If you'd like to propose a future event (breakfast, lunch, dinner), please let me know.

Techniques of Integration

To evaluate $\int f(x) d x$ (an antiderivative) or $\int_{a}^{b} f(x) d x$ (a number), we might try:

- Substitution = change of variables; we did some on Thursday;
- Integration by parts-the magic elixir;
- Numerical integration (for definite integrals);
- Integration via partial fractions (just a bit).

We will learn about these techniques this week-mostly through examples.

Substitution

On Thursday, we looked at

$$
\int \cos \left(x^{2}\right) x d x
$$

Today:

$$
\int e^{\cos x} \sin x d x
$$

We set $u=\cos x, \frac{d u}{d x}=-\sin x, d u=-\sin x d x$.
The integral becomes

$$
-\int e^{u} d u=-e^{u}+C=-e^{\cos x}+C
$$

Today:

$$
\int e^{\cos x} \sin x d x
$$

We set $u=\cos x, \frac{d u}{d x}=-\sin x, d u=-\sin x d x$.
The integral becomes

$$
-\int e^{u} d u=-e^{u}+C=-e^{\cos x}+C
$$

Find

$$
\int_{0}^{\pi / 2} e^{\cos x} \sin x d x
$$

We now know enough to write down the answer as

$$
\left.-e^{\cos x}\right]_{0}^{\pi / 2}=-e^{\cos (\pi / 2)}+e^{\cos 0}=-e^{0}+e^{1}=e-1
$$

Find

$$
\int_{0}^{\pi / 2} e^{\cos x} \sin x d x
$$

We now know enough to write down the answer as

$$
\left.-e^{\cos x}\right]_{0}^{\pi / 2}=-e^{\cos (\pi / 2)}+e^{\cos 0}=-e^{0}+e^{1}=e-1
$$

Alternative path

Find

$$
\int_{0}^{\pi / 2} e^{\cos x} \sin x d x
$$

Set $u=\cos x$ and $d u=-\sin x d x$ as before. Now say:
"As x ranges from 0 to $\pi / 2, \cos x$ ranges from 1 to 0 ."
Accordingly:

$$
\left.\int_{0}^{\pi / 2} e^{\cos x} \sin x d x=-\int_{1}^{0} e^{u} d u=-e^{u}\right]_{1}^{0}=e-1
$$

At the end of the previous slide, we allowed ourselves to write \int_{1}^{0} even though $1<0$.
Formally, $\int_{b}^{a} f(x) d x$ is defined to be $-\int_{a}^{b} f(x) d x$ for $a \leq b$.
The point of the previous example is that you never have to undo the substitution (i.e., go back from u to x) when computing a definite integral. Just write the limits of integration in terms of the new variable.

At the end of the previous slide, we allowed ourselves to write \int_{1}^{0} even though $1<0$.
Formally, $\int_{b}^{a} f(x) d x$ is defined to be $-\int_{a}^{b} f(x) d x$ for $a \leq b$.
The point of the previous example is that you never have to undo the substitution (i.e., go back from u to x) when computing a definite integral. Just write the limits of integration in terms of the new variable.

A trig substitution

Recall this computation from the Time of Implicit Differentiation:

If $x=\tan y$, then

$$
1=\left(\sec ^{2} y\right) \frac{d y}{d x}=\left(1+\tan ^{2} y\right) \frac{d y}{d x}=\left(1+x^{2}\right) \frac{d y}{d x}
$$

and thus

$$
\frac{d y}{d x}=\frac{1}{1+x^{2}}, \quad \frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}}
$$

I've written "tan ${ }^{-1}$ " for the inverse tangent, also called arctan.

Find an antiderivative of the function $\frac{1}{1+x^{2}}$.
In view of what we just did, we could come up with the answer $\tan ^{-1} x$.

This is a bit unsatisfactory because we answered the question only be remembering a computation that we just did.

Find an antiderivative of the function $\frac{1}{1+x^{2}}$.
In view of what we just did, we could come up with the answer $\tan ^{-1} x$.

This is a bit unsatisfactory because we answered the question only be remembering a computation that we just did.

The classic approach to computing $\int \frac{1}{1+x^{2}} d x$ is to introduce a "trigonometric substitution" out of the blue:
Let $x=\tan u, \frac{d x}{d u}=\sec ^{2} u, d x=\sec ^{2} u d u$. Then

$$
\int \frac{1}{1+x^{2}} d x=\int \frac{1}{1+\tan ^{2} u} \sec ^{2} u d u=\int 1 d u=u+C
$$

We finish by saying that $u=\tan ^{-1} x$, so the answer is $\tan ^{-1} x+C$.

Find $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$.
By definition, this is $\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{1}{1+x^{2}} d x$.
We computed the indefinite integral: $\tan ^{-1} x$. Since

$$
\begin{aligned}
\tan ^{-1}(0)= & 0, \\
& \frac{1}{1+x^{2}} d x=\tan ^{-1} b \text { and } \\
& \int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\lim _{b \rightarrow \infty} \tan ^{-1} b=\frac{\pi}{2} .
\end{aligned}
$$

The area under the entire graph of $y=\frac{1}{1+x^{2}}$ is $2 \cdot \frac{\pi}{2}=\pi$ by symmetry.

BREAK

By Parts

The technique of integration by parts attempts to reverse-engineer the product formula

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

where u and v are functions of x. Symbolically,

$$
d(u v)=u d v+v d u, \quad \int d(u v)=\int u d v+\int v d u
$$

In other words,

$$
u v=\int u d v+\int v d u, \quad \int u d v=u v-\int v d u
$$

We are not bothering to write " $+C$ " in these formulas because indefinite integrals include a tacit $+C$ in their values.

Say that again

$$
\int u d v=u v-\int v d u
$$

when u and v are functions of x. When we are confronted with an integral, it's up to us to decide how to use the formula: we introduce u and v so that $\int u d v$ is the integral we are handed and so that $\int v d u$ seems to be more appealing.
We need an example-or maybe a joke.

Say that again

$$
\int u d v=u v-\int v d u
$$

when u and v are functions of x. When we are confronted with an integral, it's up to us to decide how to use the formula: we introduce u and v so that $\int u d v$ is the integral we are handed and so that $\int v d u$ seems to be more appealing.
We need an example-or maybe a joke.

Suppose someone wants an antiderivative of $x \sin x$:

$$
\int x \sin x d x=? ?
$$

We introduce $u=x$ and write tentatively $d v=\sin x d x$ in order to see whether we can find a v so that $d v=\sin x d x$. This equation amounts to

$$
\frac{d v}{d x}=\sin x \Longrightarrow v=-\cos x
$$

We could have taken $v=-\cos x+31$ but the choice of v is ours, so we pick the simple $v=-\cos x$.

Now

$$
\int x \sin x d x=\int u d v \text { with } u=x, v=-\cos x
$$

The formula

$$
\int u d v=u v-\int v d u
$$

becomes

$$
\int x \sin x d x=-x \cos x+\int \cos x d x
$$

The right-hand side is

$$
-x \cos x+\sin x+C
$$

so we have learned that

$$
\int x \sin x d x=-x \cos x+\sin x+C
$$

As a check, let's compute the derivative of $-x \cos x+\sin x$:

$$
[-x \cdot(-\sin x)-1 \cdot \cos x]+\cos x=x \sin x
$$

as we hoped.

Another example

Compute $\int_{0}^{\infty} x e^{-x} d x$
Do it first without the factor x :

$$
\left.\int_{0}^{\infty} e^{-x} d x=\lim _{b \rightarrow \infty}-e^{-x}\right]_{0}^{b}=\lim _{b \rightarrow \infty}\left(1-e^{-b}\right)=1
$$

Next, think about $\int x e^{-x} d x$ in terms of integration by parts. Again we take $u=x$, and this time we take $v=-e^{-x}$ to get $d v=e^{-x} d u$.

The formula $\int u d v=u v-\int v d u$ gives

$$
\int x e^{-x} d x=-x e^{-x}+\int e^{-x} d x
$$

so
$\left.\int_{0}^{b} x e^{-x} d x=-x e^{-x}\right]_{0}^{b}+\int_{0}^{b} e^{-x} d x=\left(0-b e^{-b}\right)+\int_{0}^{b} e^{-x} d x$.
Hence

$$
\int_{0}^{\infty} x e^{-x} d x=\int_{0}^{\infty} e^{-x} d x-\lim _{b \rightarrow \infty} b e^{-b}=1-0=1
$$

The value $\lim _{b \rightarrow \infty} b / e^{b}=0$ comes from l'Hôpital's Rule.

In this computation, we can streamline things as follows:

- we can carry the limits of integration along as we compute instead of doing the indefinite integral first;
- we can be real pros and symbolically take $b=\infty$ all along.

Confronted with $\int_{0}^{\infty} x e^{-x} d x$, we take $u=x, v=-e^{-x}$ as before and write directly

$$
\left.\int_{0}^{\infty} x e^{-x} d x=-x e^{-x}\right]_{0}^{\infty}+\int_{0}^{\infty} e^{-x} d x=(0-0)+1=1
$$

Maybe this is just packaging.

