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Pop-in lunch on Wednesday

Pop-in lunch tomorrow,
November 8, at high noon.

Please join our group at the
Faculty Club for lunch.
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Means

If X is a random variable with PDF equal to f (x), then we’ve
defined:

µ = mean of X = E [X ] = expected value of X

=

∫ ∞
−∞

x · f (x)dx .
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Simple properties of the mean

The mean of a sum is the sum of the means, i.e.,
E [X1 + X2] = E [X1] + E [X2].
The mean of a product is usually not the product of the
means; for example, E [X 2] and E [X ]2 are typically
different. (The difference between the two is the variance
of X , as I’ll explain in a few moments.)
If X is constant, say X = a, then E [X ] = a.
E [X − µ] = 0 if µ = E [X ].
E [47 · X ] = 47 · E [X ]. You can replace 47 by another
number if you prefer.
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Here’s an important question: X 2 is a random variable; what is
E [X 2]? Can we write it as an integral?

The answer is “yes,” and in fact

E [X 2] =

∫ ∞
−∞

x2f (x)dx .

More generally,

E [X n] =

∫ ∞
−∞

xnf (x)dx

for n ≥ 0.
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Want to know why?
I thought so. . . .
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This won’t be on the exam

We first figure out the CDF of X 2. We started with X , say with
CDF equal to F (t) and PDF = f (x).

Let G(t) and g(x) be the CDF and PDF of X 2. By definition:

G(t) = P(X 2 ≤ t).

For t negative, G(t) = 0. For t ≥ 0,

G(t) = P(X 2 ≤ t) = P(−
√

t ≤ X ≤
√

t) = F (
√

t)− F (−
√

t)

and thus

g(t) = G′(t) = f (
√

t)
1

2
√

t
+ f (−

√
t)

1
2
√

t
.
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Not on the exam

Thus

E [X 2] =

∫ ∞
0

t g(t)dt =
∫ ∞

0
t
(

f (
√

t) + f (−
√

t)
) 1

2
√

t
dt .

Put x =
√

t , t = x2. We get

E [X 2] =

∫ ∞
0

x2
(

f (x) + f (−x)
)

dx

and we can convert this to∫ ∞
−∞

x2f (x)dx

by changing the sign of the variable in
∫ ∞

0
x2f (−x)dx .
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On the exam

The variance of a random variable X measures the extent to
which X differs from its mean µ = E [X ]:

Var[X ] = E [(X − µ)2].

We square X − µ in order to treat negative and positive
differences the same.

Algebraically,

Var[X ] = E [X 2 − 2µX + µ2] = E [X 2]− 2µE [X ] + µ2

= E [X 2]− 2E [X ] · E [X ] + E [X ]2

= E [X 2]− E [X ]2.
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Example

We roll a fair coin once and let X = 1 if we get a head, X = 0 if

we get a tail. Then E [X ] =
1
2

. Since 02 = 0 and 12 = 1,

X 2 = X . Thus

Var[X ] = E [X 2]− E [X ]2 =
1
2
− 1

4
=

1
4
.
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A biased coin

Same example, but suppose that the coin comes up heads with
probabilty p, tails with probability q = 1− p. Then E [X ] = p and

Var[X ] = E [X 2]− E [X ]2 = p − p2 = p(1− p) = pq.
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The Math 10A case

If X has mean µ, then

Var[X ] = E [X 2]− E [X ]2 =

∫ ∞
−∞

x2f (x)dx − µ2

=

∫ ∞
−∞

x2f (x)dx − 2µ · µ+ µ2

=

∫ ∞
−∞

x2f (x)dx −
∫ ∞
−∞

2µxf (x)dx +

∫ ∞
−∞

µ2f (x)dx

=

∫ ∞
−∞

(x2 − 2µx + µ2)f (x)dx

=

∫ ∞
−∞

(x − µ)2f (x)dx .
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Standard normal distribution

A change of variable (u =
x√
2

) yields

∫ ∞
−∞

e−x2/2 dx =
√

2
∫ ∞
−∞

e−u2
du =

√
2
√
π =
√

2π.

Hence the function

f (x) =
1√
2π

e−x2/2

is a PDF. It’s the gold standard normal distribution. The
statement that “X is normally distributed” most often means
that f (x) is its PDF.
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Normal distributions (in the plural)

If X has f (x) as its PDF, X has mean 0 (because of symmetry
with respect to the vertical axis) and variance 1 (as we’ll check).
For the more general formula

f (x) =
1√

2πσ2
e−(x−µ)

2/(2σ2),

the mean is µ and the variance is σ2. The number σ is taken to
be positive, so the standard deviation

√
σ2 will be σ.

You’ll find lots of pictures and a good discussion in Wikipedia.
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Lognormal

If X is non-negative, it won’t be associated with a normal
distribution, which runs from −∞ to +∞. But it might be the
exponential of a normal variable. A random variable is called
lognormal if its natural log is normal, i.e., if it’s of the form
enormal variable.

If the normal variable has parameters σ and µ, then the PDF of
the lognormal variable is

1√
2π σ

1
x

e−
(ln x−µ)2

2σ2 .
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Warning: the mean and standard deviation of the lognormal
variable are not µ and σ; those are the mean and standard
deviation of the normal variable before exponentiation. The
mean and variance of the lognormal variable are calculated in
terms of µ and σ in problem 37 of §7.4.

Going the other way, you can write σ and µ in terms of the mean
and standard deviation of the lognormal variable (problem 38).
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Not on the test

Why is the lognormal PDF given by the weird formula

1√
2π σ

1
x

e−
(ln x−µ)2

2σ2

on a previous slide? We’ll work this out in the simple case
σ = 1, µ = 0.

Say X is a variable whose ln is distributed according to the
standard normal distribution. Then

P(a ≤ ln X ≤ b) =
∫ b

a

1√
2π

e−x2/2 dx ,

P(ea ≤ X ≤ eb) =

∫ b

a

1√
2π

e−x2/2 dx .
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Hence

P(X ≤ t) =
∫ ln t

−∞

1√
2π

e−x2/2 dx .

If F is the CDF for the normal variable, then

P(X ≤ t) = F (ln t)− F (−∞) = F (ln t).

In other words, the CDF for the lognormal variable is obtained
from the CDF of the normal variable by a natural log
substitution. That was probably obvious to many of you.

The PDF for the lognormal variable is then

d
dt

(
F (ln t)

)
=

1
t

F ′(ln t) =
1
t

1√
2π

e−(ln t)2/2,

as claimed.
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About that standard deviation

The standard deviation is the square root of variance:

Standard deviation of X =
√

Var[X ].

That should be it—end of story. However, it’s not because
people speak more frequently of standard deviations than of
variances. We’ll talk about Chebyshev’s inequality in a bit.
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Variance of normal distribution

If f (x) =
1√
2π

e−x2/2 is the CDF of X , we will check that

Var[X ] = 1, i.e., that ∫ ∞
−∞

x2f (x)dx = 1.

To compute
1√
2π

∫ ∞
−∞

x2e−x2/2 dx ,

use integration by parts. Let u =
x√
2π

, dv = xe−x2/2 dx ,

v = −e−x2/2. The term uv
]∞
−∞

is 0, and we get (as desired)

1√
2π

∫ ∞
−∞

x2e−x2/2 dx =
1√
2π

∫ ∞
−∞

e−x2/2 dx = 1.
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Logistic distribution

The logistic CDF is F (x) =
ex

1 + ex and the corresponding PDF

is f (x) = F (x)(1− F (x)).

-10 -5 5 10
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0.15
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0.25

We have f (x) =
ex

(1 + ex)2 , which we can rewrite as
e−x

(1 + e−x)2

by dividing numerator and denominator by e−xe−x .
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If X has PDF equal to f (x), then again E [X ] = 0 by symmetry.

Also,

Var[X ] =

∫ ∞
−∞

x2 ex

(1 + ex)2 dx .

Looking at Schreiber or at Wikipedia, you’ll read that

Var[X ] =
π2

3
.

For a derivation of the formula, see this post on Mathematics
Stack Exchange.
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Chebyshev’s inequality

The inequality in question concerns an arbitrary random
variable X . Say that the mean of X is µ and that the standard
deviation of X is σ. For integers k ≥ 1, the inequality states:

P(µ− kσ ≤ X ≤ µ+ kσ) ≥ 1− 1
k2 .

In other words: the probability of being k or more standard

deviations away from the mean is at most
1
k2 . For example, the

probability of being two or more standard deviations away from
the mean is at most 1/4.
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Why is Chebyshev’s inequality true?

The explanation is provided on page 553 of the book and also
(of course!) in Wikipedia. The following slides summarize the
argument.
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Not on the exam

For simplicity, we’ll assume that the expected value of X is 0;
this just means shifting the line x = µ over to the y -axis. Then

σ2 =

∫ ∞
−∞

x2f (x)dx ≥
∫ kσ

−∞
x2f (x)dx +

∫ ∞
kσ

x2f (x)dx

≥
∫ kσ

−∞
(kσ)2f (x)dx +

∫ ∞
kσ

(kσ)2f (x)dx

= k2σ2

(∫ kσ

−∞
f (x)dx +

∫ ∞
kσ

f (x)dx

)
.

Divide by σ2 to get

1
k2 ≥

(∫ kσ

−∞
f (x)dx +

∫ ∞
kσ

f (x)dx

)
.
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Not on the exam

The same inequality read differently:(∫ kσ

−∞
f (x)dx +

∫ ∞
kσ

f (x)dx

)
≤ 1

k2 .

The left-hand sum represents the probability that X is to the
right of kσ plus the probability that X is to the left of −kσ. In
other words, the left-hand term is the probability that X is k or
more standard deviations from its mean.

Summary:

P(X is k or more standard deviations from its mean) ≤ 1
k2 .

P(X is within k standard deviations of its mean) ≥ 1− 1
k2 .
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