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What is statistics?

Statistics is the science of collection, organization, and
interpretation of data.

Typical procedure:
Start with a question
Collect relevant data
Analyze the data
Make inferences based on the data

Statistical inference is the heart of modern statistics.

Much of statistical reasoning is built on the mathematical
framework that we’ve spent the last couple of weeks on –
probability theory.
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Sampling

Typically we are interested in a population – for example, all
Berkeley students, all registered voters in the U.S., all blue
whales, all bacteria of a certain species.

It’s often unreasonable to collect data for every member of a
large population, so we work with a sample of the population.

When collecting a sample, it’s important to avoid sampling
bias, which is when the method of sampling systematically fails
to represent the population.

Example: Posting a survey on Facebook groups to determine
how much sleep Berkeley students get (selection bias,
response bias)

Simple random sample (SRS): each member of the
population has the same chance of being selected for the
sample (gold standard of sampling)
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Data

Data can be quantitative or qualitative.

Quantitative: height, weight, temperature, age, time, ...
Qualitative: eye color, ethnicity, gender, college major,
whether or not someone smokes, ...

Qualitative data can sometimes be meaningfully converted into
something quantitative: for example, in a sample of adults, we
could assign a 1 to those who voted in the last election, and a 0
to individuals who did not.

Why is this a meaningful thing to do?

The average of the 1’s and 0’s is equal to the proportion of
people in the sample who voted.
Used in advanced linear models (not in this class)
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Analyzing quantitative data

Suppose we have some quantitative data from our sample, in
the form of a list of values: x1, x2, x3, . . . , xn.

What are some ways of analyzing this data?

sample mean: x̄ =
x1 + x2 + . . .+ xn

n
sample variance: How spread out is the data in the
sample? How does this relate to the population variance?
Does the data appear to belong to a certain family of
probability distributions? If so, can we determine or
estimate the parameter(s) of the distribution?

The third bullet point is the topic of the rest of this class
meeting.
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Some families of probability distributions

Uniform distribution: f (x |a,b) =


1

b − a
if a ≤ x ≤ b

0 otherwise
Parameters: a,b (a < b)

Pareto distribution: f (x |p) =


p − 1

xp if x ≥ 1

0 if x < 1
Parameter: p > 1 (“shape parameter”)

Exponential distribution: f (x |c) =

{
ce−cx if x ≥ 0
0 if x < 0

Parameter: c > 0 (“rate parameter”)

Normal distribution: f (x |µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2

Parameters: µ (mean), σ > 0 (standard deviation)
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Visual: Pareto distribution
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Visual: Exponential distribution
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Visual: Normal distribution
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Example 1

A popular fast food chain wishes to optimize service. To do this,
they collect data on the time between customers entering the
restaurant (interarrival times) during prime time hours. Below is
a histogram of 100 observations:

In a histogram, the area of the rectangle above an interval [a,b]
is the proportion of data lying within the interval [a,b).
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Example 1

Below is the same histogram, now with the PDF of an
exponential distribution with some parameter drawn in red.

Looks like a good fit! It makes sense to model the interarrivals
times of customers as exponentially distributed random
variables.

How do we determine which exponential distribution?
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Likelihood function

Given some observed data x1, x2, . . . , xn and a family of
(continuous) probability distributions with PDFs {f (x |θ)} (θ is
the parameter), the likelihood function is

L(θ) = L(θ|x1, . . . , xn) =
n∏

i=1

f (xi |θ) = f (x1|θ) · f (x2|θ) · · · f (xn|θ)

The likelihood function measures the relative likelihood of
observing the observed data, assuming that the data comes
from the specified probability distribution with parameter θ.
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Likelihood function

Remarks:
The likelihood function does not represent a probability for
continuous distributions (It’s not always between 0 and 1.)
The product form of the likelihood function is derived from
the underlying assumption that each observation is
independent and identically distributed.
The likelihood function is a function of θ, not x1, x2, . . . , xn
(common misconception!) The xi ’s are observed data, so
they’re all just constants – we just write them as xi for the
sake of generality.
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Maximum Likelihood Estimation

Idea: We can estimate the value of the parameter by finding
the value of θ which maximizes the likelihood function L(θ).

This makes sense intuitively: Associated to each possible value
of θ is a “likelihood” of observing the observed data if the true
value of the parameter were equal to θ. The idea is to pick the
value of θ which makes this likelihood as large as possible, and
use that as our estimate of the population parameter.

Definition: The maximum likelihood estimator of θ, denoted
θ̂MLE , is the value of θ which maximizes L(θ).
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Back to Example 1

We decided that the exponential distribution is a suitable model
for the interarrival times of customers.

Recall: An exponential distribution with parameter c > 0 has
PDF

f (x |c) =

{
ce−cx if x ≥ 0
0 if x < 0.

If our observed values are x1, x2, . . . , x100, then the likelihood
function is

L(c) =
100∏
i=1

f (xi |c) =
100∏
i=1

ce−cxi = c100e−c
∑100

i=1 xi .

Math 10A Data and Statistics, Maximum Likelihood



Maximizing the likelihood function

How can we find c which maximizes L(c) = c100e−c
∑100

i=1 xi ?

Remember calculus? – take a derivative, set it equal to 0, and
solve for c.

WAIT! In most cases, it’s not so easy to take the derivative of
the likelihood function, because the likelihood function is a
product of a bunch of functions, and derivatives of products
aren’t so clean. (In the particular case of Example 1, it’s
actually not too bad.)

Technique: Maximize the log likelihood function instead:

`(θ) = log L(θ)

Fact: θ∗ maximizes L(θ) if and only if θ∗ maximizes `(θ).

This is because the function g(x) = ln(x) is an increasing
function.
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Visual: log of a function

Math 10A Data and Statistics, Maximum Likelihood



Back to Example 1

The log-likelihood function in Example 1 is

`(c) = ln L(c) = ln(c100e−c
∑100

i=1 xi ) = 100 ln c − c
100∑
i=1

xi .

The derivative is

`′(c) =
d
dc
`(c) =

100
c
−

100∑
i=1

xi .

Setting `′(c) equal to 0 and solving for c yields the following
formula for the maximum likelihood estimator for c:

ĉMLE =
100∑100
i=1 xi

=
1
x̄
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Remark

Remark: The mean of an exponential distribution with

parameter c is
1
c

. The result of our computations above says
that the maximum likelihood estimator of the parameter given
the sample data is simply 1 divided by the sample mean.

That makes sense!
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Consistency of MLE (not on exam)

The idea of maximum likelihood makes sense intuitively, but is it
always a good way to estimate a population parameter?

It is a theorem in statistics that in fact, the maximum likelihood
estimator θ̂MLE converges to the true population parameter θ0
as the size of the sample n tends to∞.

Any estimator that satisfies the property above is called a
consistent estimator.
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Example 2 (discrete)

Suppose you are given a biased coin which lands heads with
some probability p0 (unknown).

You decide to flip the coin 200 times, and you want to find the
maximum likelihood estimator of p0.

Let Xi =

{
1 if i th flip is heads
0 if i th flip is tails

For a coin that lands heads with probability p, P(Xi = 1) = p
and P(Xi = 0) = 1− p.

There’s a clever way to write this probability mass function:

P(Xi = x) = px (1− p)1−x

Check!
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Likelihood for discrete distributions

Given a discrete distribution (only integer values possible) with
probability mass function f (k |θ) = P(X = k |θ) depending on a
parameter θ, the likelihood function given a set of observed
values x1, x2, . . . , xn is defined to be

L(θ) = L(θ|x1, . . . , xn) =
n∏

i=1

f (xi |θ) = f (x1|θ) · f (x2|θ) · · · f (xn|θ).

This looks exactly the same as the previous formula for
continuous distributions...

The difference is that in the continuous case f is the PDF, and
in the discrete case f is the PMF.

In the discrete case, the likelihood function actually is the
probability of observing the observed values, assuming that the
data comes from the specified probability distribution with
parameter θ.
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Back to Example 2

You flip the coin 200 times, and your observed values are
x1, x2, . . . , x200, where xi = 1 if the i th flip was heads, and xi = 0
if the i th flip was tails (the xi ’s are observed values, so they are
not random.)

The likelihood function is

L(p) =
200∏
i=1

pxi (1− p)1−xi = p
∑200

i=1 xi (1− p)200−
∑200

i=1 xi .

Remember, the goal is to find the value of p which maximizes
the expression above.
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Example 2

As before, we can make our lives easier by instead maximizing
the log-likelihood function.

First, let s =
200∑
i=1

xi . The log-likelihood function is

`(p) = ln L(p) = ln
(

ps(1− p)200−s
)

= s ln p + (200− s) ln(1− p).

The derivative is

`′(p) =
d
dp
`(p) =

s
p
− 200− s

1− p
.

Setting `′(p) equal to 0 and solving for p gives us

p̂MLE =
s

200
=

∑200
i=1 xi

200
= x̄ (= proportion of heads in sample).
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Remark

We found that the maximum likelihood estimator for p in this
problem is actually just the proportion of heads in the sample –
makes sense again.

Since the MLE is a consistent estimator, that means the
proportion of heads in the sample converges to p0, the coin’s
true chance of heads.

... but we already knew that, by the law of large numbers.
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Beat Stanfurd

2009 Golden Bears posing with the Axe
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