
Law of Large Numbers, Central Limit Theorem

Math 10A

November 14, 2017

Math 10A Law of Large Numbers, Central Limit Theorem



November 15–18

Ribet in Providence on AMS business.

No SLC office hour tomorrow.
Thursday’s class conducted by Teddy Zhu.
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November 21

Class on hypothesis testing and p-values
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December 1

8AM breakfast—send email to sign up;
pop-in lunch at high noon (just show up).
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Variance of a sum

If X1 and X2 are random variables, then

Var[X1 + X2] = E [(X1 + X2)
2]− (E [X1 + X2])

2

= (E [X 2
1 ]− E [X1]

2) + (E [X 2
2 ]− E [X2]

2)

+ 2(E [X1X2]− E [X1]E [X2])

= Var[X1] + Var[X2] + 2(E [X1X2]− E [X1]E [X2])

If X1 and X2 are independent, the term E [X1X2]− E [X1]E [X2]
is 0 because the expected value of a product of independent
variables is the product of the expected values.
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Hence the variance of a sum of two independent random
variables is the sum of the variances of the random variables:

Var[X1 + X2] = Var[X1] + Var[X2].

If the two random variables are not independent, this formula is
very unlikely to hold. For example, suppose X2 = X1. Then

Var[X1 + X2] = Var[2 · X1] = 4 Var[X1].

If the variance of X1 is non-zero, 4 Var[X1] will be different from
Var[X1] + Var[X1] = 2 · Var[X1].
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Many variables

There is a (somewhat technical) definition of what it means for
a bunch of random variables X1, X2,. . . , Xn to be independent
(i.e., mutually independent). If they are independent, then

Var[X1 + X2 + · · ·+ Xn] = Var[X1] + · · ·+ Var[Xn].

The variance of a sum of n independent variables is the sum of
the variances of the variables.
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Imagine again a (possibly biased) coin that comes up heads
with probability p and tails with probability q = 1− p.

There’s a natural random variable X in the picture: X = 0 if we
flip a coin once and get T; X = 1 if we get H.

We’ve seen that this random variable has mean p and
variance pq.
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iid’s

Let’s flip the coin n times and let X1, X2, . . . , Xn be the random
variables associated with the first, second,. . . , nth flips.

The random variables X1, X2, etc. are clones of X . We say that
they are identically distributed.

They are independent of each other: a given flip has no
entanglement with the other flips.

The variables X1, X2,. . . are independent and identically
distributed (“iid”).
The random variable X1 + X2 + · · ·+ Xn counts the number of
heads obtained when flipping a coin n times.
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The random variable X1 + X2 + · · ·+ Xn counts the number of
heads obtained when flipping a coin n times.

Its expected values is p + p + · · ·+ p = np. If H comes up 1/5 of
the time and we flip the coin 1000 times, we expect
1000× 1/5 = 200 heads. This makes a lot of sense to us.

The variable X1 + X2 + · · ·+ Xn has variance
pq + pq + · · ·+ pq = npq because the Xi are independent of
each other. This makes sense to me because I’m teaching the
course, but I don’t have a pithy explanation to post to social
media.
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The distribution of X1 + X2 + · · ·+ X1000, p = 0.2.
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If c is a constant, then

E [c(X1 + X2 + · · ·+ Xn)] = c · np,

Var[c(X1 + X2 + · · ·+ Xn)] = c2npq.

The reason for the second equation is that Var[X ] involves
squares: E [X 2], E [X ]2.

Take c =
1
n

; then

E
[

X1 + X2 + · · ·+ Xn

n

]
= p,

Var
[

X1 + X2 + · · ·+ Xn

n

]
=

pq
n
.
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This graph is exactly like the previous graph, except that the
x-axis has been squashed by a factor of 1000.
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An “abstraction” with nothing really new in it: Let X be a
random variable with mean µ and standard deviation σ. Let
X1,X2, · · · ,Xn be identically distributed independent clones
of X , and let X be the average of the Xi :

X =
X1 + X2 + · · ·+ Xn

n
.

Then X has mean µ, variance
σ2

n
and standard deviation

σ√
n

.

We can say that X is “like” X in that it has the same mean but
“less random” than X because its standard deviation is

σ√
n

instead of σ.
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What happens when n gets big?
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The distribution of
X1 + X2 + · · ·+ X10000

10000
, p = 0.2.
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What you see is what you get: the random variable X looks as
if all of the probability is concentrated at the single value µ.

This is the Law of Large Numbers:

As n→∞, the average X =
X1 + · · ·+ Xn

n
tends to µ.

Remember: this is not just a good idea—it’s the law.

To understand what’s going on, remember that the standard
deviation of X is

σ√
n

. As n→∞, the deviation of X

approaches 0, so it’s natural to think of X as a constant.
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Not on the exam

If you want to read more about the Law, see the Wikipedia
discussion, including the References and External links.

Math 10A Law of Large Numbers, Central Limit Theorem

https://en.wikipedia.org/wiki/Law_of_large_numbers


Break
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December 1

You know that you want to sign up for the
8AM breakfast. #reallygoodspecialbreakfast
How could you possibly miss the pop-in
lunch at high noon? #lastdayofclasses
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Let X be a random variable with mean µ and standard
deviation σ. Let X1,X2, · · · ,Xn be identically distributed
independent clones of X , and let X be the average of the Xi :

X =
X1 + X2 + · · ·+ Xn

n
.

Then X has mean µ, variance
σ2

n
and standard deviation

σ√
n

.
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Now for something different. First, subtract µ from X : X − µ has

mean 0. It still has variance
σ2

n
and standard deviation

σ√
n

.

Relative to the graph, all we’ve done is to shift the graph by −µ
units so that its center is at 0 instead of at µ.

Next, consider

(X − µ) ·
√

n
σ
.

This new random variable has mean 0 and standard
deviation 1. . .

. . . just like the gold standard normal variable, the one with PDF

equal to
1√
2π

e−x2/2.
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n
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(X − µ) ·
√

n
σ

?←→ 1√
2π

e−x2/2

Math 10A Law of Large Numbers, Central Limit Theorem



Possibly clarifying comments

The random variable X =
X1 + X2 + · · ·+ Xn

n
depends

on n. We might have called it X n to stress the dependence.
Let’s do that from when appropriate.

We could rewrite X
√

n
σ

as
X1 + X2 + · · ·+ Xn

σ
√

n
and get an

alternative expression for (X − µ) ·
√

n
σ

.

Data 8 instructors report that students in traditional
statistics courses can never remember whether to multiply
or divide by

√
n!
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Biased coin example (again)

We continue discussing the biased coin that appeared before.

To make things concrete, assume p =
1
5

, q =
4
5

; the coin
comes up H with probability 0.2. For a single coin flip with

X = 0 or 1, the mean is 0.2, the variance is pq =
4

25
and the

standard deviation is σ =
2
5

.

Let’s flip the coin 10000 times; i.e., we take n = 104. The
random variable X has values ranging from 0/104 to 104/104.

The extreme values occur with very low probabilities
(

4
5

)104

and
(

1
5

)104

, respectively.
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We saw the distribution of X before the break. Here’s the
probability distribution for X − µ:
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To get something with standard deviation 1, we need to multiply

by
√

n
σ

= 100× 5
2
= 250. The values of (X − µ) ·

√
n
σ

will range
from −50 to 200:
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This graph looks exactly like the previous one. But it’s fake
news to say that they’re the same. The most recent graph is
obtained from the previous one by stretching out the x-axis by a
factor of 250. The “technology” that produced the graph
automatically squashes the graph horizontally so that it can fit
on the screen. Sad!
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This graph zeros in on the probabilities associated with the

values of (X − µ) ·
√

n
σ

between ±2.5. The picture looks a lot
like a normal curve that was ordered up from Central Casting.

“Central” is the word.
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Central Limit Theorem

For real numbers a and b with a ≤ b:

P

(
a ≤ (X n − µ)

√
n

σ
≤ b

)
−→ 1√

2π

∫ b

a
e−x2/2 dx

as n→∞.

For further info, see the discussion of the Central Limit
Theorem in the 10A_Prob_Stat notes on bCourses.
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The theorem is often paraphrased by the statement that the

variables
(X n − µ)

√
n

σ
are becoming more and more like a

standard normal variable.

For example, we might think

P

(
0 ≤ (X n − µ)

√
n

σ
≤ 1

)
≈ 1√

2π

∫ 1

0
e−x2/2 dx ≈ 0.3413

In the biased coin example, this means that the probability of
getting between 2000 and 2040 heads in 10000 tosses is
roughly 0.3413. To four decimal places, this probability
is 0.3483. The probability of getting between 8000 and 8080
heads in 40000 tosses is roughly 0.3448.
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https://en.wikipedia.org/wiki/Central_limit_theorem


With a table like this, we could look up the value 0.3413(4).
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Then and now

Old-style problem: “A biased coin. . . . Estimate the probability
of getting between 8000 and 8080 heads in 40000 tosses of the
coin.” Answer: Guided by the Central Limit Theorem, we
estimate the probability to be 0.3413.

2017-style exercise: “Use technology to compute a decimal
value for the probability of getting between 8000 and 8080
heads in 40000 tosses of the coin.” Answer: 0.3448.

We can compute directly many quantities that our ancestors
needed to estimate using tables.
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