You put away all books, calculators, cell phones and other devices. You consulted a single two-sided sheet of notes. You wrote carefully and clearly, USING WORDS (not just symbols). The paper you handed in was your only representative when your work is graded.

Point counts:

$$
\begin{array}{c||c|c|c|c|c|c|c|c}
\text { Problem } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \text { Total } \\
\hline \text { Points } & 5 & 5 & 6 & 6 & 6 & 6 & 6 & 40
\end{array}
$$

1. The perimeter of a regular n-gon inscribed in the circle of radius 1 is $2 n \sin \left(\frac{\pi}{n}\right)$. Find the limit as $n \rightarrow \infty$ of this expression. (Explain in words what you are doing-this requirement applies to each of the questions on this midterm.)

2a. Show that $\frac{1}{m^{2}+3 m+2}=\frac{1}{m+1}-\frac{1}{m+2}$ for $m \geq 0$.
b. Find the sum of the infinite series $\sum_{n=0}^{\infty} \frac{1}{n^{2}+3 n+2}$ by considering the partial sums of the series.
3. Referring to the diagram below, explain carefully why

$$
\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} \leq 1-\frac{1}{n}
$$

for $n \geq 2$.

You acted with honesty, integrity, and respect for others.
4. Determine the volume of the solid obtained by revolving the area under $y=\sin x$ from $x=0$ to $x=\pi$ about the x-axis. [Hint: it may be helpful to know that $\cos 2 x=1-2 \sin ^{2} x$.]

5. Find y as a function of x, given $\frac{d y}{d x}=y(2 x+1)$ and $y(0)=2$.
6. Use integration by parts, twice, to find an antiderivative of $e^{x} \sin x$.
7. Use the chain rule and the fundamental theorem of calculus to find

$$
\frac{d}{d x}\left(\int_{x^{2}}^{x^{3}} \sin \left(t^{2}\right) d t\right)
$$

