Professor Ken Ribet

Homework due Thursday, November 16, 2017
Definitive version-unless there are errors that need to be corrected
Problems from the book:

- §7.1: 36
- §7.4: 37, 38
- Review questions, pp. 588-589: 3, 5, 10, 14, 18, 19

If the random variable X has $f(x)$ as its PDF, find the PDF of $37 X$.

Let Ω be the set of the eight possible outcomes when we toss a coin three times:

$$
\Omega=\{(000),(001),(010), \ldots,(111)\} .
$$

If the coin comes up heads with probability $p(0<p<1)$ and tails with probabiity $q=1-p$, then the probability of (000) is q^{3}, the probability of (001) is $q^{2} p$, and so on.

Let X_{1}, X_{2} and X_{3} be the functions that report the outcomes of the third respective tosses:

$$
X_{1}(a b c)=a, \quad X_{2}(a b c)=b, \quad X_{3}(a b c)=c .
$$

Let $\bar{X}=\frac{X_{1}+X_{2}+X_{3}}{3}$ be the average of X_{1}, X_{2} and X_{3}; let

$$
Y=\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}+\left(X_{3}-\bar{X}\right)^{2} .
$$

Find the expected value of Y as a function of $p($ and $q)$.

Hint: Let's do the analogous computation there are two tosses instead of three. Then there are only X_{1} and $X_{2} ; \bar{X}$ is their average. The four outcomes 00, 01, 10 and 11 occur with respective probabilities $q^{2}, p q, p q, p^{2}$. (The sum of these probabilities, $q^{2}+p q+p q+p^{2}=(p+q)^{2}$, is 1.) The values of \bar{X} are respectively $0, \frac{1}{2}, \frac{1}{2}, 1$. The values of $Y=\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}$ are respectively $0, \frac{1}{2}, \frac{1}{2}$,
0 . The expected value of Y is $0 \cdot q^{2}+\frac{1}{2} \cdot p q+\frac{1}{2} \cdot p q+0 \cdot p^{2}=p q$.

When there are three tosses, your answer should have been $2 p q$. Can you guess what would happen if there were n tosses instead of 3 ?

