Homework due Thursday, November 16, 2017

Definitive version—unless there are errors that need to be corrected

Problems from the book:

- §7.1: 36
- §7.4: 37, 38
- Review questions, pp. 588–589: 3, 5, 10, 14, 18, 19

If the random variable X has f(x) as its PDF, find the PDF of 37X.

Let Ω be the set of the eight possible outcomes when we toss a coin three times:

$$\Omega = \{ (000), (001), (010), \dots, (111) \}.$$

If the coin comes up heads with probability p (0) and tails with probability <math>q = 1 - p, then the probability of (000) is q^3 , the probability of (001) is q^2p , and so on.

Let X_1 , X_2 and X_3 be the functions that report the outcomes of the third respective tosses:

$$X_1(abc) = a, \quad X_2(abc) = b, \quad X_3(abc) = c.$$

Let $\overline{X} = \frac{X_1 + X_2 + X_3}{3}$ be the average of X_1 , X_2 and X_3 ; let $Y = (X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 + (X_3 - \overline{X})^2.$ Find the expected value of Y as a function of p (and q).

Hint: Let's do the analogous computation there are two tosses instead of three. Then there are only X_1 and X_2 ; \overline{X} is their average. The four outcomes 00, 01, 10 and 11 occur with respective probabilities q^2 , pq, pq, p^2 . (The sum of these probabilities, $q^2 + pq + pq + p^2 = (p+q)^2$, is 1.) The values of \overline{X} are respectively $0, \frac{1}{2}, \frac{1}{2}, 1$. The values of $Y = (X_1 - \overline{X})^2 + (X_2 - \overline{X})^2$ are respectively $0, \frac{1}{2}, \frac{$

When there are three tosses, your answer should have been 2pq. Can you guess what would happen if there were n tosses instead of 3?