Probability

Kenneth A. Ribet

Math 10A
November 3, 2016

We had a great breakfast this morning!

Pop-in lunch tomorrow at 12:30PM.
Pop-in lunch on Monday, November 7 at 12:10PM.
Breakfast next Thursday (Nov. 10) at 9:00AM.

Numberphile

Brady Haran from Numberphile may be popping in to class later today. He will probably be at lunch tomorrow, at least for the first half-hour.

Borrowed from Tuesday

If Ω is a probability space, a function

$$
X: \Omega \rightarrow \mathbf{R}
$$

is called a random variable.
A random variable is not random.
A random variable is not a variable.
A random variable is a function.

It is easy to give examples of random variabes in the Math 10B context. For example: $\Omega=$ the set of all 1024 outcomes of ten flips of a coin; $X(\omega)=$ the number of heads in ω.
It is arguably harder to find good examples of random variables in the "continuous" (Math 10A) situation.

Here's one: Let Ω be the set of places in the USA. (So Ω is the surface of that part of the earth that's include in the US.) For each $\omega \in \Omega$, let $X(\omega)$ be the temperature recorded at ω at midnight (GMT) on November 1. Note that X is recorded in Celsius and that $X(\omega)$ is measured at altitude of ω is on a mountain (say).

How is Ω a probability space? What is $P(A)$ if A is a subset of the US?

- We could let $P(A)$ be the area of A (normalized so that the total area of the USA is 1).
- We could let $P(A)$ be the population of A (normalized so that the total population of the US is 1).
- We could let $P(A)$ be the number of pieces of Halloween candy left in A at midnight on November 2, divided by the total number of pieces of Halloween candy in the US.
Let's stick with the first method.

What is $P(X \geq 20)$?

This is the fraction (measured in area) of the US where the temperature was at least $20^{\circ} \mathrm{C}$ at midnight GMT on November 1.

Note that the event $X \geq 20$ is the subset of the US where the temperature was 20 degrees C or above.

A PDF for X is a function $f(x)$ such that

$$
P(X \in B)=\int_{B} f(x) d x
$$

for subsets B of \mathbf{R}. In particular, we should have

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

for real numbers a and b (with $a \leq b$).
There might be no PDF for a sufficiently annoying X.
A CDF for X is a function $F(x)$ such that $P(X \leq x)=F(x)$ for real numbers x. Then

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

is just an antiderivative of $f(x)$.

A CDF runs from 0 (for $x=-\infty$) to 1 (for $x=\infty$). For a slightly different normalization, see the Wikipedia article about the error function, which is defined by

$$
\operatorname{erf}(x)=\frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^{2}} d t
$$

and has values running from -1 to +1 instead of from 0 to 1 .

Wikipedia: "The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power law probability distribution that is used in description of social, scientific, geophysical, actuarial, and many other types of observable phenomena."

This distribution is given by its PDF, which is 0 for $x<1$ and $\frac{p-1}{x^{p}}$ for $x \geq 1$. Here p is a parameter (as in the p-series test) that needs to be greater than 1 . For example, if $p=2$, the PDF is $\frac{1}{x^{2}}$ for $x \geq 1$.
MIT economics: "The right tail of income and wealth distributions often resemble Pareto."

Mean

For X with PDF equal to $f(x)$, the mean or average value of X is $\int_{-\infty}^{\infty} x \cdot f(x) d x$. The values of X are weighted according to how often they occur.

This is based explained in analogy with the "discrete" case, where the values of X are finite (or countably infinite).

