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Yesterday’s pop-in lunch
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Announcements

Happy Thanksgiving! No classes Wednesday–Friday.

Breakfast Thursday, December 1 at 9AM.

Breakfast Monday, December 5 at 9AM.

Sign up for breakfasts by sending me email.
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Course evaluations

Evaluations for your course(s) have opened to
students.
Although students received an invitation email and
reminders along the way, previous research
demonstrates that a personal reminder from the
instructor and an explanation of how evaluations are
used to inform your teaching can make a positive
impact on response rate and quality.
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Please write interesting things when you do the course
evaluations.

I will read your comments!!
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Prelude: PDF of X 2

Here’s an exercise like two that were on the homework:
Suppose that X is a continuous random variable with PDF
equal to f (x). What is the PDF of X 2?

Let F (x) be the CDF of X ; let g(x) and G(x) be the PDF and
CDF of X 2.

Then for real numbers d ,

G(d) = P(X 2 < d).

Clearly G(d) = 0 for d ≤ 0, so we are interested only in the
values of G and g on positive real numbers.
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Take x > 0. Then

G(x2) = P(X 2 < x2) = P(−x < X < x) = F (x)− F (−x).

Differentiate the equation G(x2) = F (x)− F (−x) with respect
to x , using that G′ = g and F ′ = f :

2xg(x2) = f (x) + f (−x).

Hence

g(x2) =
f (x) + f (−x)

2x
, g(t) =

f (
√

t) + f (−
√

t)
2
√

t
.

When f is an even function,

g(t) =
f (
√

t)√
t
.
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What is the probability of getting 600 or more heads if you flip a
fair coin 1000 times?

The number of outcomes if you flip a coin 1000 times is 21000,
which has 302 digits. The number of ways to get 600 heads in

1000 flips is
(

1000
600

)
, a 291-digit number that is more precisely

4965272386254228861150735628896231326
21341353659827604662932184012645905

73209645738216496413657550741717233904
2089778751904887857092411910579077

412408539948204974129778390437393954251
676800524680653478266662364352619

2441809311540207011119823280007769803059
55525649501369943202079996789539150.
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If the coin is fair, the probability of getting 600 or more heads in
1000 flips is

1
21000

1000∑
i=600

(
1000

i

)
≈ 1.364232× 10−10.

This is a minuscule number! Even the probability of getting 530
or more heads in 1000 tosses is rather small: it’s 0.0310.

Another data point: the probability of getting 527 or more heads
in 1000 tosses is 0.0468, which is a bit less than 5%.
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Now let’s change the story. Suppose that someone hands you
a coin and asks you if you think it’s fair. You flip it 1000 times (or
build a machine that flips coins. . . ) and observe the results.

If you get 600 heads, you’ll probably conclude that the coin
is highly unlikely to be fair—you’ll think it’s biased toward
heads.
If you get 530 heads, you’ll probably think the coin is
biased.
If you’re a professional statistician and you get 527 heads,
you will reject the hypothesis that the coin is fair (and ask
to be paid a consulting fee).
If you’re a professional statistician and get 526 heads, you’ll
calculate that this is an event that occurs with probability
0.0534 for fair coins and refuse to reject the hypothesis
that the coin is fair. You’ll ask for a consulting fee.
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In this story, the hypothesis that the coin is fair is called the null
hypothesis (nothing going on). The probabilities that we
calculated are called p-values.

A p-value is a probability calculated under the assumption that
the null hypothesis is true. It’s the probability of getting an
experimental outcome that is either your outcome or something
even more extreme.
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Adopted from my March 3, 2016 10B lecture

In statistics, there are “p-values. . . .” . . . the online “textbook”
(and everyone else) says:

The p-value associated with an possible outcome r is
the probability that the test statistic is ≥ r , assuming
the correctness of the null hypothesis H0.

Note that large r -values typically lead to small p-values.
(Getting 540 heads is less likely than getting 530 heads.) The
magic p-value (traditionally) is 0.05. For p ≤ 0.05, we reject H0.

For p ≥ 0.05, we warm up to H0, but it is incorrect to say that
we accept it. The correct statement is that we cannot reject it.
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The Math 10B breakfast on March 3, 2016
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The American Statistical Association’s Statement on p-values:
P-values can indicate how incompatible the data are with a
specified statistical model.
P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.
Scientific conclusions and business or policy decisions
should not be based only on whether a p-value passes a
specific threshold.
Proper inference requires full reporting and transparency.
A p-value, or statistical significance, does not measure the
size of an effect or the importance of a result.
By itself, a p-value does not provide a good measure of
evidence regarding a model or hypothesis.
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Generalization

Suppose that we have a coin and suspect that it comes up H
with probability p (0 < p < 1).

The null hypothesis is that the coin is “biased” with probabilities
p (for heads) and q = 1− p (for tails). (If p = q = 1/2, the coin
is fair.)

The “p” here is not the same “p” as in “p-values,” but that’s
probably not the end of the world.
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To test the null hypothesis, we flip the coin N times (N big),
recording the results. We imagine getting around pN heads;
suppose that we actually get m heads. If m is too far from pN,
then we will end up rejecting the null hypothesis (to the effect
that the coin is biased with probability p).
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We need to see what is meant by “too far.”

If m is bigger than or equal to pN, we could calculate the actual
probability of getting m or more heads, as we did with the first
example.

If m < Np, the analogue would be to calculate the probability of
getting m or fewer heads.

This is great when it is possible. A computational problem could
arise if N is enormous. We had N = 1000 in the first example.
Even if we had a yuge computer, we could have trouble if N
were 1,000,000,000 or something.
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Here’s another sort of issue. You’re handed a die and want to
test the hypothesis that it’s fair. You roll it 600 times and get the
six different faces with frequencies

82, 103, 95, 88, 102, 130.

Does this disturb you? Do you reject the null hypothesis? What
computation do you need to make?

The plan is that you’ll find out next semester.
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Back to coins: let’s try the Central Limit Theorem.

Introduce the 0–1 variable X attached to a single flip of the
coin. It has expected value µ = p and variance
p − p2 = p(1− p) = pq. As usual, let X1,X2, . . . be copies of X
that are indexed by the individual flips and let X = X N be the
average of the Xi .

Then X has mean p and standard deviation
σ√
N

, where

σ =
√

pq is the standard deviation of X .

The random variable

Z =
(X − µ)

√
N

σ
=

XN − µN
σ
√

N

is rigged up to have mean 0 and standard deviation 1. It’s like
the Gaussian in those respects.
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The virtue of writing the numerator of Z as XN − µN is that
XN = m is the number of heads that we actually observed,
whereas µN = pN is the number of heads that we were
anticipating.

To check that we’re doing the right sort of thing, note that if

p =
1
2

, N = 100 and m = 70, the fraction is
70− 50

1
2 · 10

= 4. This

number should be familiar from the HW due yesterday.

You can say that the calculation here is nice mainly because of

the accident that the variance pq =
1
2
· 1

2
has a neat-looking

square root, namely
1
2

, and that N has a nice square root,
namely 10.
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In general, it might be nicer to look at Z 2, which doesn’t involve
square roots.

The random variable Z 2 is then easy to write down:

(number of observed heads− number of expected heads)2

Npq
.

With the obvious notation, we can write this fraction
symbolically as

(OH − EH)
2

Npq
.

(So “O” is for “observed” and “E” for “expected,” i.e.,
anticipated.)
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Somewhat amazingly, a short calculation shows that this
fraction can be written symmetrically as the sum

(OH − EH)
2

EH
+

(OT − ET )
2

ET
,

where the subscript T refers to tails (in place of heads).

To do the calculation, it’s useful to know that
1
p
+

1
q
=

1
pq

.
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A big advantage of Z 2 over Z is that we never have to worry
whether Z 2 is positive or negative. It’s always positive (or 0).
When the head/tail count is wacky, Z 2 is big regardless of
whether there are too many heads or too few heads.

A summary of the situation: if Z 2 = 0, there were exactly as
many heads as we anticipated and we won’t reject the null
hypothesis. If Z 2 is too big, we’ll reject the null hypothesis.

The question is what do we mean by “too big.” Of course, the
answer is “having probability less than 0.05,” but for this to be
helpful we need to know how Z 2 is distributed.
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Numbers

For reference, in the situation with p = q =
1
2

, N = 100,
OH = 70,

Z 2 =
(OH − EH)

2

Npq
=

400
25

= 16.

If p = q =
1
2

, N = 1000, OH = 600,

Z 2 =
1002

250
= 40.
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Chi squared

A secret: Z 2 is the simplest example of a Chi-squared
distribution. Its PDF is the function f (x) that’s 0 for x ≤ 0 and is
given by the formula

e−x/2
√

x
√

2π

for x > 0. Note that the PDF approaches∞ for x ↓ 0 because
of the

√
x in the denominator.

It is not too hard to calculate the PDF. Shall we do that? I want
to, but you’re going to vote me down, aren’t you? The derivation
is available in Wikipedia, of course. [Addendum: see the
prelude. We did it!]

You can find various applets online that output probabilities
(p-values) when you input the statistic Z 2.
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HAPPY THANKSGIVING!
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