1. Discuss the convergence of each of the following infinite series:
a. $\sum_{n=1}^{\infty} \frac{\ln n}{2^{n}}$,
b. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$,
c. $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.

2a. Express $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1-\frac{2 i}{n}\right)\left(\frac{2}{n}\right)$ as an integral of the form $\int_{0}^{1} f(x) d x$.
b. Express $\int_{-1}^{1} \cos x d x$ as a limit of Riemann sums.

3a. Find the indefinite integral $\int \sin ^{3} x d x$. (Use that $\sin ^{2}+\cos ^{2}=1$.)
b. Evaluate $\int_{0}^{\infty} \frac{e^{x}}{\left(1+e^{x}\right)^{2}} d x$.
4. Calculate the volume of the football-shaped solid obtained by rotating the interior of the ellipse $\frac{y^{2}}{4}+\frac{x^{2}}{9}=1$ about the x-axis.

5a. Evaluate this function of $t: \int_{0}^{t} s e^{-s} d s$.
b. Find $\frac{d}{d t} \int_{0}^{t^{2}} e^{-x^{2}} d x$. (Hint: write the function to be differentiated in the form $G\left(t^{2}\right)$, where $G(u)=\int_{0}^{u} e^{-x^{2}} d x$.)

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

