1. Find a formula for the derivative $\frac{d y}{d x}$ in each of the following three cases:
a. $y=\sqrt[3]{\sin \left(x^{3}\right)}$,
b. $y=\ln \left(\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right)$,
c. $x^{4}+4 y^{4}=7$.

In the third case, your formula may involve y as well as x.
2. The equation $x^{2}-x-1=0$ has a root between 1.5 and 2.0. Suppose we employ Newton's method to find an approximation for the root, starting with 2 as our first guess for the root. What will the method output as our second guess? What will the method then output as our third guess?

3a. Let

$$
f(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Use the definition of derivative to express $f^{\prime}(0)$ as a limit.
b. Decide whether or not the limit in part (a) exists; if it does, find its value.
4. Sketch the graph of $y=\frac{x}{1+x^{2}}$, taking note of such features as local maxima and minima, concavity, intercepts with the axes and behavior as $x \rightarrow \pm \infty$. Be sure to include the coordinates of any points where concavity changes or where the graph has a max or min.
5. Evaluate each of the following limits (if they exist):
a. $\lim _{x \rightarrow 0+} x^{1 / x}$,
b. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x+1}-x\right)$.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

