1. Write the repeating decimal $0.142857142857 \ldots$ as a geometric series and thereby identify the fraction whose decimal expansion is $0.142857142857 \ldots$...
2. Does the sequence $a_{n}=\frac{\ln n}{n}$ converge to a limit? If so, what is the limit?
3. Show that the sequence $c_{n}=\left(1+\frac{1}{n}\right)^{n}$ is an increasing sequence, i.e., that $c_{n+1} \geq c_{n}$ for all $n \geq 1$.
4. Decide whether the infinite series $\sum_{n=1}^{\infty} \frac{n}{n+2}$ is convergent? If it is convergent, can you find the sum?
5. Show that $\sum_{n=1}^{\infty} \frac{1}{1+\ln n}$ is divergent by comparing this series to another series that we know to be divergent.
6. Use the ratio test to decide whether or not $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ is convergent.
7. Use the ratio test to decide whether or not $\sum_{n=1}^{\infty} \frac{10^{n}}{n!}$ is convergent.
