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The original problem

H10: Find an algorithm that solves the following problem:

input: f(x1,...,xn) € Z[x1, ..., Xn]
output: YES or NO, according to whether there exists
3eZ" with f(3) =0.

(More generally, one could ask for an algorithm for solving a
system of polynomial equations, but this would be
equivalent, since

A= =f,=0 < f12—|—---+f2:O.)

m

Theorem (Davis-Putnam-Robinson 1961 +
Matijasevi¢ 1970)

No such algorithm exists.

In fact they proved something stronger. ..
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Hilbert's Tenth

Diophantine, listable, recursive sets Problern
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» A C Zis called diophantine if there exists
p(t,X) € Z[t, x1, ..., Xm]
such that
A={ae€Z:(IX€Z™)p(a,X)=0}.

Example: The subset N :={0,1,2,...} of Z is
diophantine, since for a € 7Z,

aeN «— (Oxi,x,x3,X4 €EL) XF+X5+X54+x3 = a.

» A C Zis listable (recursively enumerable) if there is a
Turing machine such that A is the set of integers that it
prints out when left running forever.

» A C Z is recursive if there is an algorithm
for deciding membership in A:

input: a€Z
output: YES if a € A, NO otherwise



Negative answer

>

Recursive = listable: A computer program can loop
through all integers a € Z, and check each one for
membership in A, printing YES if so.

Diophantine = listable: A computer program can
loop through all (a,X) € Z*™ and print out a if
p(a, x) = 0.

Listable == recursive: This is equivalent to the
undecidability of the Halting Problem of computer
science.

Listable = diophantine: This is what
Davis-Putnam-Robinson-Matijasevi¢ really proved.

Corollary (negative answer to H10)

There exists a diophantine set that is not recursive. In other

words, there is a polynomial equation depending on a
parameter for which no algorithm can decide for which
values of the parameter the equation has a solution.

Hilbert's Tenth
Problem

Bjorn Poonen



Generalizing H10 to other rings Hilbert's Tenth

Problem

Bjorn Poonen

Let R be a ring (commutative, associative, with 1).

H10/R: Is there an algorithm with General rings

input: f(x1,...,xn) € R[x1,...,Xn]
output: YES or NO, according to whether there exists
e R" with f(3) =07

Technicality:

» The question presumes that an encoding of the elements of
R suitable for input into a Turing machine has been fixed.

» For many R, there exist several obvious encodings and it
does not matter which one we select, because algorithms
exist for converting from one encoding to another.

» For other rings (e.g. uncountable rings like C), one should
restrict the input to polynomials with coefficients in a subring
Ry (like Q) whose elements admit an encoding.
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Z: NO by D.-P.-R.-Matijasevi¢

C: YES, by elimination theory

R: YES, by Tarski's elimination theory for semialgebraic
sets (sets defined by polynomial equations and
inequalities)

Qp: YES, again because of an elimination theory

Fg: YES, trivially!

In the last four examples, there is even an algorithm for the

following more general problem:

General rings

input: First order sentence in the language of rings,
such as

(B))(E)Ew) (xz43 = y?) V ~(z = x+w)

output: YES or NO, according to whether it holds
when the variables are considered to run over
elements of R
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k . number field (finite extension of Q). Rings of integers
Ok : the ring of integers of k (the set of « € k
such that p(c«) = 0 for some monic p € Z[x])

Examples:
>» k=Q, Or=7%
> k=Q(), Ok=2]i]
> k=Q(V5), O =z

Conjecture

H10/Oy has a negative answer for every number field k.



H10 over rings of integers, continued erobiem
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» The negative answer for Z used properties of the Pell
equation x2 — dy? = 1 (where d € Z~g is a fixed
non-square). lts integer solutions form a finitely Rings of integers
generated abelian group related to Oa(\/g).

» The same ideas give a negative answer for H10/Oj,
provided that certain conditions on the rank of groups
like this (integral points on tori) are satisfied. But they
are satisfied only for special k, such as totally real k and
a few other classes of number fields.

Theorem (P., Shlapentokh 2003)
If there is an elliptic curve E/Q with

rank E(k) = rank E(Q) > 0,

then H10/Oy has a negative answer.
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H10/Q is equivalent to the existence of an algorithm for

deciding whether an algebraic variety over QQ has a rational

point.

Does the negative answer for H10/Z imply a negative

answer for H10/Q? “

» Given a polynomial system over @@, one can construct a
polynomial system over Z that has a solution (over Z)
if and only if the original system has a solution over Q:
namely, replace each original variable by a ratio of
variables, clear denominators, and add additional
equations that imply that the denominator variables are
nonzero.

» Thus H10/Q is embedded as a subproblem of H10/Z.
» Unfortunately, this goes the wrong way, if we are trying

to use the non-existence of an algorithm for H10/Z to
deduce the non-existence of an algorithm for H10/Q.
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» If the subset Z C Q were diophantine/@Q, then we could
deduce a negative answer for H10/Q.
(Proof: If there were an algorithm for @, then to solve .
an equation over Z, consider the same equation over Q
with auxiliary equations saying that the rational
variables take integer values.)

» More generally, it would suffice to have a diophantine
model of Z over QQ: a diophantine subset A C Q™
equipped with a bijection ¢: A — Z such that the
graphs of addition and multiplication (subsets of Z3)
correspond to diophantine subsets of A3 C Q3.

It is not known whether Z is diophantine over QQ, or whether
a diophantine model of Z over Q exists. (Can E(Q) for an
elliptic curve of rank 1 serve as a diophantine model?)



Rational points in the real topology

If X is a variety over Q, then X(Q) is a subset of X(R), and
X(R) has a topology coming from the topology of R.
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Figure 17. Rational points on the curve y? + y = x> — x.

(The figure is from Hartshorne, Algebraic geometry.)
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Conjecture (Mazur 1992)

The closure of X(Q) in X(R) has at most finitely many o
connected components.

» This conjecture is true for curves.

» There is very little evidence for or against the
conjecture in the higher-dimensional case.

The next two frames will discuss the connection between
Mazur's conjecture and H10/Q.



i Hilbert's Tenth
Proposition A

If Z is diophantine over Q, then Mazur’s conjecture is false. Bjorn Poonen

Proof.
Suppose Z is diophantine over Q; this means that there
exists a polynomial p(t, X) such that

Z={acQ:(3x QM) p(a,X) =0}.

Let X be the variety p(t,x) = 0 in A" Then X(Q) has
infinitely many components, at least one above each
teZ. O
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Mazur's conjecture and diophantine models oo
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» We just showed that Mazur's conjecture is incompatible
with the statement that Z is diophantine over Q.

» Cornelissen and Zahidi have shown that Mazur's
conjecture is incompatible also with the existence of a Q
diophantine model of Z over Q.
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H10 over subrings of Q Hilbert's Tenth
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Let P = {2,3,5,...}. There is a bijection Blom Poonen

{subsets of P} < {subrings of Q}
S Z[S7Y.

Subrings of Q
Examples: ubrings o

» S =10, Z[S™Y] = Z, answer is negative
» S=7P, Z[S71] = Q, answer is unknown

» What happens for S in between?

» How large can we make S (in the sense of density) and
still prove a negative answer for H10 over Z[S™1]?

» For finite S, a negative answer follows from work of
Robinson, who used the Hasse-Minkowski theorem
(local-global principle) for quadratic forms.



H10 over subrings of QQ, continued

Theorem (P., 2003)

There exists a recursive set of primes S C P of density 1
such that

1. There exists a curve E such that E(Z[S™Y]) is an
infinite discrete subset of E(R). (So the analogue of
Mazur's conjecture for Z[S™1] is false.)

2. There is a diophantine model of Z, over Z[S™Y].
3. HI10 over Z[S™1] has a negative answer.

The proof takes E to be an elliptic curve (minus o), and
uses properties of integral points on elliptic curves.
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Ring H H10 ‘ 1st order theory ‘
C YES | YES
R YES | YES
F, | YES | YES
p-adic fields YES | YES
Fq((2)) [
number field ? NO
Q ?7 | NO
global function field || NO | NO
Fq(t) NO | NO
C(t) 707
C(t1,...,ty), n>21] NO | NO
R(t) NO | NO
Ok 7?7 | NO
Z NO | NO
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