The first-order theory of finitely generated
fields

Bjorn Poonen
University of California at Berkeley
(on work of Robinson, Ershov, Rumely, Pop, myself, and Scanlon)

Antalya Algebra Days X
June 1, 2008

The first-order
theory of finitely
generated fields

Bjorn Poonen

Distinguishing fields
F.g. fields

ons

Rumely’s work

Quadratic forms

Building anisotropic

r forms
r dimension
field

Algebraic dependence

Bi-interpretability
Proof

Non-uniformity
Uniform
oi-interpretability



Distinguishing fields

Example
The first-order sentence

(I)3y) * +y? = -1

holds for every finite field, and hence for every field of
positive characterstic. But it is false for Q.

To what extent can we distinguish fields by the truth values
of first-order sentences?
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Some fields cannot be distinguished by first-order sentences. theory of finitely

generated fields

EXa m p|e Bjorn Poonen

Any first-order sentence true for C is true also for any
algebraically closed field of characteristic 0. Bt el

Corollary (Lefschetz principle)

Many theorems of algebraic geometry proved over C using
analytic methods automatically transfer to any algebraically
closed field of characteristic 0.

Example

Elementary model theory shows that any first-order sentence
true for C holds also for any algebraically closed field of
sufficiently large positive characteristic (depending on the
sentence).

To hope to be able to distinguish fields, we must restrict the
class of fields considered.



Finitely generated fields

Every field K has a minimal subfield, isomorphic to either Q
or [F, for some prime p.

Definition
Call K finitely generated (f.g.) if it is finitely generated as a

field extension of its minimal subfield.

o F.g. fields arise naturally as the function fields of
varieties over number fields and finite fields.

@ The theory of transcendence bases shows that every f.g.

field is a finite extension of Q(t1,..., t,) or
Fp(t1,...,tn), where n is the absolute transcendence

degree.
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Three questions about the richness of the
arithmetic of f.g. fields

Question (Sabbagh 1980s, Pop 2002)

Given non-isomorphic f.g. fields K and L, is there a sentence
that is true for K and false for L?

(Previously Duret had asked for the analogue for f.g.
extensions of algebraically closed fields, and he and later
Pierce proved some cases of this.)

Question (P. 2007)

Given a f.g. field K, is there a sentence that is true for K
and false for all f.g. fields not isomorphic to K?

Question (P. 2007)

Is every reasonable class of infinite f.g. fields cut out by a
single sentence?
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Three questions about the richness of the
arithmetic of f.g. fields

Question (Sabbagh 1980s, Pop 2002, proved by Scanlon)

Given non-isomorphic f.g. fields K and L, is there a sentence
that is true for K and false for L?

(Previously Duret had asked for the analogue for f.g.
extensions of algebraically closed fields, and he and later
Pierce proved some cases of this.)

Question (P. 2007, proved by Scanlon)

Given a f.g. field K, is there a sentence that is true for K
and false for all f.g. fields not isomorphic to K?

Conjecture (P. 2007, still open)

Every reasonable class of infinite f.g. fields is cut out by a
single sentence.
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Reasonable classes of f.g. fields

Definition (P. 2007, idea due to Hrushovski)

Choose a natural bijection between a recursive A C N and
{(ryf,...;fm):reNJA, ... fm € Z[x1,..., x|}
Construction of Z[xi, ..., x//(fi,- .., fm) yields a map

A — {f.g. Z-algebras}.

The set of a € A such that the corresponding Z-algebra is a
domain is a recursive subset B C A. Construction of the
fraction field yields a map

B — {isomorphism classes of f.g. fields}.

For any class of f.g. fields, define the set of b € B for which
the corresponding field belongs to the class. Call the class
reasonable if this subset of B is a first-order definable subset

of (N, +,-).
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Rumely’s work on the global field case

Definition
A global field is a field of one of the following types:
1. number field: finite extension of Q
2. global function field: f.g. extension of transcendence
degree 1 over some [Fp,.

Rumely gave a positive answer to all three questions
restricted to global fields.

@ A key step was to build on work of Robinson and
Ershov to give uniform definitions of the family of
valuation subrings.

@ Then, for example, he could distinguish number fields
from global function fields by using a first-order
sentence saying

“The intersection of all valuation rings in K
is not a field.”
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Quadratic forms

Definition
A quadratic form over a field k in xq,...,x, is a
homogeneous polynomial of degree 2 in k[xi, ..., x,].

Definition
A quadratic form g(xi, ..., xn) is isotropic if there exist
ai,...,an € k not all 0 such that

q(ai,...,an) =0.
It is called anisotropic otherwise.

Example

x? — 3y? over Q is anisotropic.

Example

X2+ X2 + X2 over Q is anisotropic.
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Quadratic forms

Definition
A quadratic form over a field k in xq,...,x, is a
homogeneous polynomial of degree 2 in k[xi, ..., x,].

Definition
A quadratic form g(xi, ..., xn) is isotropic if there exist
ai,...,an € k not all 0 such that

q(ai,...,an) =0.
It is called anisotropic otherwise.

Example

x? — 3y? over Q is anisotropic.

Example

x2 +x3 +x32+x2  over Q is anisotropic.
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Quadratic forms

Definition

A quadratic form over a field k in xq,...,x, is a
homogeneous polynomial of degree 2 in k[xi, ..., x,].
Definition

A quadratic form g(xi, ..., xn) is isotropic if there exist
ai,...,an € k not all 0 such that

q(ai,...,an) =0.
It is called anisotropic otherwise.

Example

x? — 3y? over Q is anisotropic.

Example

X2 +x3 + x5 +x2 +x2 over Q is anisotropic.
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Quadratic forms

Definition

A quadratic form over a field k in xq,...,x, is a
homogeneous polynomial of degree 2 in k[xi, ..., x,].
Definition

A quadratic form g(xi, ..., xn) is isotropic if there exist
ai,...,an € k not all 0 such that

q(ai,...,an) =0.
It is called anisotropic otherwise.

Example

x? — 3y? over Q is anisotropic.

Example

X2+ X3 + x5 +xZ +x2 + x2 over Q is anisotropic.
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Quadratic forms

Definition

A quadratic form over a field k in xq,...,x, is a
homogeneous polynomial of degree 2 in k[xi, ..., x,].
Definition

A quadratic form g(xi, ..., xn) is isotropic if there exist
ai,...,an € k not all 0 such that

q(ai,...,an) =0.
It is called anisotropic otherwise.

Example

x? — 3y? over Q is anisotropic.

Example

X2 + X3 + X5 + xZ + x2 + x2 + x2 over Q is anisotropic.
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Quadratic forms

Definition

A quadratic form over a field k in xq,...,x, is a
homogeneous polynomial of degree 2 in k[xi, ..., x,].
Definition

A quadratic form g(xi, ..., xn) is isotropic if there exist
ai,...,an € k not all 0 such that

q(ai,...,an) =0.
It is called anisotropic otherwise.

Example

x? — 3y? over Q is anisotropic.

Example

X2+ X3 + X3 + x5 + x2 + x¢ + x2 + x3 over Q is anisotropic.
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Building anisotropic forms over function fields

Example

For any field k, the form x2 + ty? over k(t) is anisotropic.

Lemma

If g(x1,...,xn) is anisotropic over k, then the form
q(xt, ...y xn) +tq(y1,- -, ¥n)

(in twice as many variables) is anisotropic over k(t).

Sketch of proof.

The t-adic valuations of the two halves are even and odd,
respectively, so they cannot cancel.

Example

The form (x2 + t1x3) + ta(y? + t1y3) over k(t1, tp) is
anisotropic.

The first-order
theory of finitely
generated fields

Bjorn Poonen

Building anisotropic
forms



Pfister forms

() =53 + 233
{(a, b)) = x¢ + a3 + bx3 + abx?

({(a, b, ¢)) := x} + ax3 + bx3 + abx;

+ ox@ + acxg + boxd + abexg

Example

For any field k, the Pfister form ({t1,...,t,)) over
k(ti,...,tp) is anisotropic.

Example

If —c is a nonsquare in Fp, then ((c,t1,...,t,)) is

anisotropic over Fy(t1, ..., ty).

Example

((2,5,t1,...,tn)) is anisotropic over Q(v/—1)(t1,. ..

s tn).
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Kronecker dimension is first-order

Definition
Let K be a f.g. field. The Kronecker dimension is defined by

tr. deg(K/Fp), if char K = p >0,

Kr.dim K :=
{tr. deg(K/Q)+1, ifcharK =0.

Theorem (Voevodsky, Rost, etc.)

Let K be a f.g. field of characteristic not 2 such that
V=1 € K. Then the largest m for which there exists an
anisotropic m-fold Pfister form ((a1,...,am)) is

Kr.dim K + 1.

If K is f.g. and char K = 2, then [K : K?] = 2tr-deg(K/F2),
Corollary (Pop 2002)

For each n € N, there exists a first-order sentence ¢, that
holds for a f.g. field K if and only if Kr.dim K = n.
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Defining the constant field

Definition
The constant field k in a f.g. field K is the relative algebraic
closure of the minimal subfield in K.

Depending on the characteristic, k is either a finite field or a
number field.

Theorem (P. 2007)

There is a first-order formula ¢)(x) that in any f.g. field K
defines the constant field.

As we know already, we can use Pfister forms to distinguish
number fields from finite fields, so we get:

Corollary (P. 2007)

There is a first-order sentence that for f.g. fields K is true if
and only if char K = 0.
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Theorem (from previous slide)

There is a first-order formula ¢(x) that in any f.g. field K
defines the constant field.

Outline of proof in the case char K =0 and v/—1 € K.

1. There exists an elliptic curve over k such that E(k) is
infinite and E(K) = E(k).
2. There exists an infinite subset S of k that is definable in

K. (Actually for the next step we need additional constraints
onS.)

3. An element t € K belongs to k if and only if
((s1,52,t — s3)) is isotropic for all s1,sp,53 € S.
(One direction is easy: if t € k, then s1, s, t — s3 all
belong to the number field k, but Kr.dim k + 1 is only
2, so ((s1,sp,t — s3)) must be isotropic.) O

(And all this can be done uniformly, i.e., with first-order
formulas independent of K. The char K = p case, which we
are omitting, is much more difficult.)
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Defining algebraic dependence

The result

Theorem (from two slides ago)

There is a first-order formula 1)(x) that in any f.g. field K
defines the constant field.

is the n = 1 case of

Theorem (P. 2007)

For each n, there exists a first-order formula (X1, . .., Xn)
such that for any f.g. field K and any a1, ..., a, € K, the
statement (a1, ..., an) holds if and only if a1, ..., a, are

algebraically dependent over k.

The proof is a generalization of the n = 1 case.
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Scanlon’s theorem

Recall that we want to prove:

Theorem (Scanlon)

Given a f.g. field K, there is a first-order sentence that is
true for K and false for every f.g. field not isomorphic to K.

Before Scanlon's work, it was understood by the experts that
it would suffice to prove the uniform definability of the family
of valuation rings in K, as Rumely had done for global fields.
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Scanlon had two insights that enabled him to build upon the
previous work to complete the proof:

@ The first, which ultimately is more a matter of elegance
and convenience than a key element of the proof, is
that it suffices to show that N (with + and -) is
bi-interpretable in K (with parameters).

@ The second, which is the key, is that a “local-global
theorem for Brauer groups of function fields”, due to
Faddeev in characteristic 0 and generalized to arbitrary
characteristic by Auslander and Brumer, can be adapted
to prove uniform definability of a family of enough
valuation rings of K to prove the bi-interpretability.
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Bi-interpretability

To say that N is bi-interpretable in K (with parameters)
means all of the following:

la. There is an interpretation of N in K: i.e., there is a
definable subset Ni of K™ for some m with a bijection
Nk — N such that the subsets of (Nx)3 corresponding
to the graphs of + and - (subsets of N3) are definable
subsets of K3™. (The actual definition is slightly more
general: it allows N — N to be a surjection inducing a
definable equivalence relation.)

1b. There is an interpretation of K in N.

2a. Let Ky, be the interpreted copy of K in K obtained by
composing the interpretations in 1a and 1b; then the
identification Ky, — K is K-definable.

2b. The analogous identification Ny, — N is N-definable.
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Proof of Scanlon’s theorem, assuming bi-interpretability.

The uniform definition of algebraic dependence
(P. 2007) lets one uniformly interpret some global field
in each infinite f.g. field (with parameters).

Combining this with the uniform interpretation of N in
global fields (Rumely) gives a uniform interpretation N
of N in all infinite f.g. fields L.

There are formulas defining a copy Ky (with + and -)
of K in N (recursion).

Transferring this from N to N; yields a uniformly
L-definable field Ky, , still isomorphic to K.

The interpretations Ky and Ny are those in Scanlon’s
bi-interpretation; in particular, there is a formula 7 that
over K defines an isomorphism Ky, — K.

Use the sentence that over L says that for some values
of the parameters 7) defines an isomorphism Ky, — L:
this sentence is true for L = K, but not for any other
f.g. field L! Ol
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Outline of Scanlon’s proof of bi-interpretability.

Bjorn Poonen
@ The proof is by induction on n := tr.deg(K/k), with
Rumely’s work as the base case.

@ Choose algebraically independent ti,...,t,_1 and let
K1 be the set of & € K such that t1,...,t,_1,« are
algebraically dependent.

(K1 is definable in K, by P. 2007.)
Then Kj is a field with tr.deg(Ki/k) =n—1, and K is
the function field of a curve over Kj.

o Adapt Fadeev-Auslander-Brumer to construct a p
definable family consisting of most of the valuation
rings between Kj and K.

@ more work. . .




Some non-uniformity

@ There is no definition of I, in F > that is uniform in p.
(This follows from work of Chatzidakis, Macintyre, and
van den Dries 1992.)

@ There is no uniform existential definition of the constant
field in f.g. fields, even if one fixes the characteristic.
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Uniform bi-interpretability?

@ The formulas constructed by Rumely and P. are uniform;
i.e., the same formulas work for all f.g. fields K.

@ But as Scanlon points out, some parts of his proof are
not uniform.

@ If the bi-interpretability statement could be made
uniform, one could prove the remaining conjecture, that
every reasonable class of infinite f.g. fields can be cut
out by a single sentence.
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